[논문구현]Feature Importance Ranking for Deep Learning(2020)
FIR
Model
Selector
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input, Flatten
from tensorflow.keras import backend as K
from tensorflow.keras.callbacks import TensorBoard
class SelectorNetwork:
def __init__(self, mask_batch_size):
print("============ SelectorNet start=============")
self.batch_size = mask_batch_size
self.mask_batch_size = mask_batch_size
self.tr_loss_history = []
self.te_loss_history = []
self.y_pred_std_history = []
self.y_true_std_history = []
self.epoch_counter = 0
self.data_masks = None
self.data_targets = None
self.best_performing_mask = None
self.sample_weights = None
def set_label_input_params(self, y_shape, y_input_layer):
self.label_input_layer = y_input_layer
self.label_shape = y_shape
def create_dense_model(self, input_shape, dense_arch):
input_mask_layer = Input(shape=input_shape)
x = Flatten()(input_mask_layer)
for i in range(len(dense_arch[:-1])):
x = Dense(dense_arch[i], activation="sigmoid")(x)
x = Dense(dense_arch[-1], activation="linear")(x)
self.model = Model(inputs=[input_mask_layer], outputs=x)
print("Subject Network model built:")
#self.model.summary()
def named_logs(self, model, logs):
result = {}
try:
iterator = iter(logs)
except TypeError:
logs = [logs]
for l in zip(model.metrics_names, logs):
result[l[0]] = l[1]
return result
def compile_model(self):
self.model.compile(loss='mae', optimizer=tf.keras.optimizers.Adam(learning_rate=0.01),
metrics=[self.get_y_std_metric(True), self.get_y_std_metric(False)])
def train_one(self, epoch_number, apply_weights): # train on data in object memory
if apply_weights == False:
curr_loss = self.model.train_on_batch(x=self.data_masks, y=self.data_targets)
else:
curr_loss = self.model.train_on_batch(x=self.data_masks, y=self.data_targets,
sample_weight=self.sample_weights)
self.best_performing_mask = self.data_masks[np.argmin(self.data_targets, axis=0)]
self.tr_loss_history.append(curr_loss)
self.epoch_counter = epoch_number
self.data_masks = None
self.data_targets = None
def append_data(self, x, y):
if self.data_masks is None:
self.data_masks = x
self.data_targets = y
else:
self.data_masks = np.concatenate([self.data_masks, x], axis=0)
self.data_targets = tf.concat([self.data_targets, y], axis=0)
def test_one(self, x, y):
y_pred = self.model.predict(x=x)
curr_loss = self.model.test_on_batch(x=x, y=y)
self.te_loss_history.append(curr_loss)
return curr_loss
def predict(self, x):
y_pred = self.model.predict(x=x)
return y_pred
def get_y_std_metric(self, ifpred=True):
def y_pred_std_metric(y_true, y_pred):
y_pred_std = K.std(y_pred)
self.y_pred_std_history.append(y_pred_std)
return y_pred_std
def y_true_std_metric(y_true, y_pred):
y_true_std = K.std(y_true)
self.y_true_std_history.append(y_true_std)
return y_true_std
if (ifpred == True):
return y_pred_std_metric
else:
return y_true_std_metric
Operator
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input, Flatten, Reshape, Conv2D, MaxPool2D
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.keras.metrics import BinaryAccuracy, AUC
class OperatorNetwork:
def __init__(self, x_batch_size, mask_batch_size, add_mopt_perf_metric=True,
use_early_stopping=True):
print("============ OperatorNet start=============")
self.batch_size = mask_batch_size * x_batch_size
self.mask_batch_size = mask_batch_size
self.x_batch_size = x_batch_size
self.losses_per_sample = None
# self.losses_per_sample = []
self.tr_loss_history = []
self.te_loss_history = []
self.epoch_counter = 0
self.add_mopt_perf_metric = add_mopt_perf_metric
self.useEarlyStopping = use_early_stopping
def create_dense_model(self, input_shape, dense_arch, last_activation="sigmoid"):
self.x_shape = input_shape
self.y_shape = dense_arch[-1]
input_data_layer = Input(shape=input_shape)
x = Flatten()(input_data_layer)
input_mask_layer = Input(shape=input_shape)
mask = Flatten()(input_mask_layer)
x = tf.keras.layers.Concatenate(axis=1)([x, mask])
for units in dense_arch[:-1]:
x = Dense(units, activation="relu")(x)
x = Dense(dense_arch[-1], activation=last_activation)(x)
self.model = Model(inputs=[input_data_layer, input_mask_layer], outputs=x)
print("Object network model built:")
def create_batch(self, x, masks, y):
"""
x = [[1,2],[3,4]] -> [[1,2],[1,2],[1,2],[3,4],[3,4],[3,4]]
masks = [[0,0],[1,0],[1,1]] -> [[0,0],[1,0],[1,1],[0,0],[1,0],[1,1]]
y = [1,3] -> [1 ,1 ,1 ,3 ,3 ,3 ]
"""
# assert len(masks) == self.mask_size
x_prim = np.repeat(x, len(masks), axis=0)
y_prim = np.repeat(y, len(masks), axis=0)
masks_prim = np.tile(masks, (len(x), 1))
x_prim *= masks_prim # MASKING
# assert len(x_prim) == self.batch_size
return x_prim, masks_prim, y_prim
def named_logs(self, model, logs, mode="train"):
result = {}
try:
iterator = iter(logs)
except TypeError:
logs = [logs]
metricNames = (mode + "_" + i for i in model.metrics_names)
for l in zip(metricNames, logs):
result[l[0]] = l[1]
return result
def compile_model(self, loss_per_sample, combine_losses, combine_mask_losses, metrics=None, optimizer=tf.keras.optimizers.Nadam(learning_rate=0.01)):
self.mask_loss_combine_function = combine_mask_losses
if self.add_mopt_perf_metric is True:
if metrics is None:
metrics = [self.get_mopt_perf_metric()]
else:
metrics.append(self.get_mopt_perf_metric())
def logging_loss_function(y_true, y_pred):
losses = loss_per_sample(y_true, y_pred)
self.losses_per_sample = losses
return combine_losses(losses)
self.model.compile(loss=logging_loss_function, optimizer=optimizer, metrics=metrics, run_eagerly=True)
def get_per_mask_loss(self, used_target_shape=None):
if used_target_shape is None:
used_target_shape = (self.x_batch_size, self.mask_batch_size)
losses = tf.reshape(self.losses_per_sample, used_target_shape)
losses = self.mask_loss_combine_function(losses)
return losses
def get_per_mask_loss_with_custom_batch(self, losses, new_x_batch_size, new_mask_batch_size):
losses = np.reshape(losses, newshape=(new_x_batch_size, new_mask_batch_size))
losses = np.apply_along_axis(self.mask_loss_combine_function, 0, losses)
return losses
def train_one(self, x, masks, y):
x_prim, masks_prim, y_prim = self.create_batch(x, masks, y)
curr_loss = self.model.train_on_batch(x=[x_prim, masks_prim], y=y_prim)
self.tr_loss_history.append(curr_loss)
self.epoch_counter += 1
return x_prim, masks_prim, y_prim
def validate_one(self, x, masks, y):
x_prim, masks_prim, y_prim = self.create_batch(x, masks, y)
curr_loss = self.model.test_on_batch(x=[x_prim, masks_prim], y=y_prim)
self.te_loss_history.append(curr_loss)
if self.useEarlyStopping is True:
self.check_ES()
return x_prim, masks_prim, y_prim, self.losses_per_sample.numpy()
def test_one(self, x, masks, y):
x_prim, masks_prim, y_prim = self.create_batch(x, masks, y)
curr_loss = self.model.test_on_batch(x=[x_prim, masks_prim], y=y_prim)
self.te_loss_history.append(curr_loss)
return curr_loss
def get_mopt_perf_metric(self):
# used_target_shape = (self.x_batch_size,self.mask_batch_size)
def m_opt_loss(y_pred, y_true):
if (self.losses_per_sample.shape[0] % self.mask_batch_size != 0): # when testing happens, not used anymore
return 0.0
else: # for training and validation batches
losses = tf.reshape(self.losses_per_sample, (-1, self.mask_batch_size))
self.last_m_opt_perf = np.mean(losses[:, int(0.5 * self.mask_batch_size)])
return self.last_m_opt_perf
return m_opt_loss
def set_early_stopping_params(self, starting_epoch, patience_batches=800, minimize=True):
self.ES_patience = patience_batches
self.ES_minimize = minimize
if (minimize is True):
self.ES_best_perf = 1000000.0
else:
self.ES_best_perf = -1000000.0
self.ES_best_epoch = starting_epoch
self.ES_stop_training = False
self.ES_start_epoch = starting_epoch
self.ES_best_weights = None
return
def check_ES(self, ):
if self.epoch_counter >= self.ES_start_epoch:
if self.ES_minimize is True:
if self.last_m_opt_perf < self.ES_best_perf:
self.ES_best_perf = self.last_m_opt_perf
self.ES_best_epoch = self.epoch_counter
self.ES_best_weights = self.model.get_weights()
else:
if self.last_m_opt_perf > self.ES_best_perf:
self.ES_best_perf = self.last_m_opt_perf
self.ES_best_epoch = self.epoch_counter
self.ES_best_weights = self.model.get_weights()
# print("ES patience left: "+str(self.epoch_counter-self.ES_best_epoch))
if (self.epoch_counter - self.ES_best_epoch > self.ES_patience):
self.ES_stop_training = True
Mask Optimizer
import numpy as np
import tensorflow as tf
class MaskOptimizer:
def __init__(self, mask_batch_size, data_shape, unmasked_data_size,perturbation_size,
frac_of_rand_masks=0.5, epoch_condition=1000 ):
print("============ MaskOptimizer start=============")
self.data_shape = data_shape
self.unmasked_data_size = unmasked_data_size
self.data_size = np.zeros(data_shape).size
self.mask_history = []
self.raw_mask_history = []
self.loss_history = []
self.epoch_counter = 0
self.mask_batch_size = mask_batch_size
self.frac_of_rand_masks = frac_of_rand_masks
self.epoch_condition = epoch_condition
self.perturbation_size = perturbation_size
self.max_optimization_iters = 5
self.step_count_history = []
def gradient(model, x):
x_tensor = tf.convert_to_tensor(x, dtype=tf.float32)
with tf.GradientTape() as t:
t.watch(x_tensor)
# loss_mask_size = (tf.norm(x_tensor,ord=2,axis=1))
loss_model = model(x_tensor)
loss = loss_model # +0.001*loss_mask_size#*loss_mask_size
return t.gradient(loss, x_tensor).numpy(), loss_model
def new_get_mask_from_grads(grads, unmasked_size, mask_size):
m_opt = np.zeros(shape=mask_size)
top_arg_grad = np.argpartition(grads, -unmasked_size)[-unmasked_size:]
m_opt[top_arg_grad] = 1
return m_opt
def new_get_m_opt(model, unmasked_size):
input_img = np.ones(shape=model.layers[0].output_shape[0][1:])[None, :] / 2 # define an initial random image
grad, loss = MaskOptimizer.gradient(model, input_img)
grad = np.negative(np.squeeze(grad)) # change sign
m_opt = MaskOptimizer.new_get_mask_from_grads(grad, unmasked_size, model.layers[0].output_shape[0][1:])
return m_opt
def new_check_for_opposite_grad(m_opt_grad, m_opt_indexes):
m_opt_grad_cp = np.copy(m_opt_grad[m_opt_indexes])
m_opt_arg_opposite_grad = np.argwhere(m_opt_grad_cp < 0)
return m_opt_indexes[m_opt_arg_opposite_grad]
def new_check_loss_for_opposite_indexes(model, m_opt, min_index, max_index, opposite_indexes):
m_opt_changed = False
m_opt_loss = model.predict(m_opt[None, :])
for ind in opposite_indexes:
m_new_opt = np.copy(m_opt)
m_new_opt[max_index] = 1
m_new_opt[ind] = 0
m_new_opt_loss = model.predict(m_new_opt[None, :])
if m_new_opt_loss < m_opt_loss:
# print("Changed i "+str(max_index)+" from 0->1 and"+str(ind)+" from 1->0.")
return True, m_new_opt
return False, m_opt
def new_check_for_likely_change(model, m_opt, min_index, max_index, m_opt_grad):
m_opt_changed = False
m_opt_loss = np.squeeze(model.predict(m_opt[None, :]))
not_m_opt_indexes = np.argwhere(m_opt == 0)
max_index = not_m_opt_indexes[np.argmax(m_opt_grad[not_m_opt_indexes])]
m_new_opt = np.copy(m_opt)
m_new_opt[min_index] = 0
m_new_opt[max_index] = 1
m_new_opt_loss = np.squeeze(model.predict(m_new_opt[None, :]))
if (m_new_opt_loss < m_opt_loss):
return True, m_new_opt
else:
return False, m_opt
def get_opt_mask(self, unmasked_size, model, steps=None):
m_opt = MaskOptimizer.new_get_m_opt(model, unmasked_size)
repeat_optimization = True
step_count = 0
if steps is None:
steps = self.max_optimization_iters
while (repeat_optimization == True and step_count < steps):
step_count += 1
repeat_optimization = False
m_opt_grad, m_opt_loss = MaskOptimizer.gradient(model, m_opt[None, :])
m_opt_grad = -np.squeeze(m_opt_grad)
m_opt_indexes = np.squeeze(np.argwhere(m_opt == 1))
min_index = m_opt_indexes[np.argmin(m_opt_grad[m_opt_indexes])]
not_m_opt_indexes = np.squeeze(np.argwhere(m_opt == 0))
if (not_m_opt_indexes.size > 1):
max_index = not_m_opt_indexes[np.argmax(m_opt_grad[not_m_opt_indexes])]
elif (not_m_opt_indexes.size == 1):
max_index = not_m_opt_indexes
opposite_indexes = MaskOptimizer.new_check_for_opposite_grad(m_opt_grad, m_opt_indexes)
repeat_optimization, m_opt = MaskOptimizer.new_check_loss_for_opposite_indexes(model, m_opt, min_index,
max_index,
opposite_indexes)
if (repeat_optimization == True):
continue
repeat_optimization, m_opt = MaskOptimizer.new_check_for_likely_change(model, m_opt, min_index,
max_index, m_opt_grad)
if (repeat_optimization == True):
continue
self.step_count_history.append(step_count - 1)
return m_opt
def check_condiditon(self):
if (self.epoch_counter >= self.epoch_condition):
return True
else:
return False
def get_random_masks(self):
masks_zero = np.zeros(shape=(self.mask_batch_size, self.data_size - self.unmasked_data_size))
masks_one = np.ones(shape=(self.mask_batch_size, self.unmasked_data_size))
masks = np.concatenate([masks_zero, masks_one], axis=1)
masks_permuted = np.apply_along_axis(np.random.permutation, 1, masks)
return masks_permuted
def get_perturbed_masks(mask, n_masks, n_times=1):
masks = np.tile(mask, (n_masks, 1))
for i in range(n_times):
masks = MaskOptimizer.perturb_masks(masks)
return masks
def perturb_masks(masks):
def perturb_one_mask(mask):
where_0 = np.nonzero(mask - 1)[0]
where_1 = np.nonzero(mask)[0]
i0 = np.random.randint(0, len(where_0), 1)
i1 = np.random.randint(0, len(where_1), 1)
mask[where_0[i0]] = 1
mask[where_1[i1]] = 0
return mask
n_masks = len(masks)
masks = np.apply_along_axis(perturb_one_mask, 1, masks)
return masks
def get_new_mask_batch(self, model, best_performing_mask, gen_new_opt_mask):
self.epoch_counter += 1
print(f"mopt epoch_counter : {self.epoch_counter}")
random_masks = self.get_random_masks()
if (gen_new_opt_mask):
self.mask_opt = self.get_opt_mask(self.unmasked_data_size, model)
if (self.check_condiditon() is True):
index = int(self.frac_of_rand_masks * self.mask_batch_size)
random_masks[index] = self.mask_opt
random_masks[index + 1] = best_performing_mask
random_masks[index + 2:] = MaskOptimizer.get_perturbed_masks(random_masks[index],
self.mask_batch_size - (index + 2),
self.perturbation_size)
return random_masks
def get_mask_weights(self, tiling):
w = np.ones(shape=self.mask_batch_size)
index = int(self.frac_of_rand_masks * self.mask_batch_size)
w[index] = 5
w[index + 1] = 10
return np.tile(w, tiling)
Feature Selector
import datetime
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
def mean_squared_error(y_true, y_pred):
return K.mean((y_true - y_pred) * (y_true - y_pred), axis=1)
def tf_mean_ax_0(losses):
return tf.reduce_mean(losses, axis=0)
def progressbar(it, prefix="", size=60):
count = len(it)
def show(j):
x = int(size * j / count)
print("\r%s[%s%s] %i/%i" % (prefix, "#" * x, "." * (size - x), j, count), end=" ")
show(0)
for i, item in enumerate(it):
yield item
show(i + 1)
print()
class FeatureSelector():
def __init__(self, data_shape, unmasked_data_size, data_batch_size, mask_batch_size,
epoch_on_which_selector_trained=8):
print("============ FeatureSelector start=============")
self.data_shape = data_shape
self.data_size = np.zeros(data_shape).size
self.unmasked_data_size = unmasked_data_size
self.data_batch_size = data_batch_size
self.mask_batch_size = mask_batch_size
self.x_batch_size = mask_batch_size * data_batch_size
self.prev_mopt_condition = False
self.epoch_on_which_selector_trained = epoch_on_which_selector_trained
def create_dense_operator(self, arch, activation, metrics=None, error_func=mean_squared_error, es_patience=800):
print("FeatureSelector.create_dense_operator start=============")
self.operator = OperatorNetwork(self.data_batch_size, self.mask_batch_size)
print("Creating operator model")
self.operator.create_dense_model(self.data_shape, arch, activation)
print("Compiling operator")
self.operator.compile_model(error_func, tf.reduce_mean, tf_mean_ax_0, metrics, optimizer='nadam')
print("Created operator")
print("FeatureSelector.create_dense_operator end =============")
def create_dense_selector(self, arch):
print("FeatureSelector.create_dense_selector start=============")
self.selector = SelectorNetwork(self.mask_batch_size)
self.selector.create_dense_model(self.data_shape, arch)
self.selector.compile_model()
print("FeatureSelector.create_dense_selector end=============")
def create_mask_optimizer(self, epoch_condition=5000, maximize_error=False, record_best_masks=False,
perturbation_size=2, use_new_optimization=False):
print("FeatureSelector.create_mask_optimizer start=============")
self.mopt = MaskOptimizer(self.mask_batch_size, self.data_shape, self.unmasked_data_size,
epoch_condition=epoch_condition, perturbation_size=perturbation_size)
self.selector.sample_weights = self.mopt.get_mask_weights(self.epoch_on_which_selector_trained)
print("FeatureSelector.create_mask_optimizer end=============")
def test_networks_on_data(self, x, y, masks):
print("FeatureSelector.test_networks_on_data start=============")
# x,y = self.udg.get_batch(number_of_data_batches)
m = masks
losses = self.operator.test_one(x, m, y)
target_shape = (len(y), len(masks))
losses = self.operator.get_per_mask_loss(target_shape)
print("SN targets: " + str(losses))
# print("SN mean targets: "+str(np.mean(losses,axis=0)))
sn_preds = np.squeeze(self.selector.predict(m))
print("SN preds: " + str(sn_preds))
print("FeatureSelector.test_networks_on_data end=============")
return losses
def train_networks_on_data(self, x_tr, y_tr, number_of_batches, val_data=None, val_freq=16):
print("FeatureSelector.train_networks_on_data start=============")
use_val_data = True
if val_data is None:
use_val_data = False
X_val = None
y_val = None
if (use_val_data is True):
X_val = val_data[0]
y_val = val_data[1]
val_epoch = 0
for i in progressbar(range(number_of_batches), "Training batch: ", 50):
mopt_condition = self.mopt.check_condiditon()
random_indices = np.random.randint(0, len(x_tr), self.data_batch_size)
random_indices2 = np.random.randint(0, len(X_val), self.data_batch_size)
x = x_tr[random_indices, :]
y = y_tr[random_indices]
selector_train_condition = ((self.operator.epoch_counter % self.epoch_on_which_selector_trained) == 0)
m = self.mopt.get_new_mask_batch(self.selector.model, self.selector.best_performing_mask,
gen_new_opt_mask=selector_train_condition)
self.operator.train_one(x, m, y)
losses = self.operator.get_per_mask_loss()
losses = losses.numpy()
if i % 10 == 0:
print("Train Epoch {:03d}: operator losses : {:.4f}".format(i, np.mean(losses)))
self.selector.append_data(m, losses)
if (selector_train_condition):
self.selector.train_one(self.operator.epoch_counter, mopt_condition)
self.prev_mopt_condition = mopt_condition
if (use_val_data is True and self.operator.epoch_counter % val_freq == 0):
print("validation start")
xval = X_val[random_indices2, :]
yval = y_val[random_indices2]
print(f"val length : {yval.shape}")
val_loss = self.operator.validate_one(xval, m, yval)
print("Validation Epoch {:03d}".format(val_epoch))
#self.operator.model.set_weights(self.operator.model)
val_epoch+=1
if (self.operator.useEarlyStopping is True and self.operator.ES_stop_training is True):
print("Activate early stopping at training epoch/batch: " + str(self.operator.epoch_counter))
print("Loading weights from epoch: " + str(self.operator.ES_best_epoch))
self.operator.model.set_weights(self.operator.ES_best_weights)
break
print("FeatureSelector.train_networks_on_data end=============")
def get_importances(self, return_chosen_features=True):
print("FeatureSelector.get_importances start=============")
features_opt_used = np.squeeze(
np.argwhere(self.mopt.get_opt_mask(self.unmasked_data_size, self.selector.model, 12) == 1))
m_best_used_features = np.zeros((1, self.data_size))
m_best_used_features[0, features_opt_used] = 1
grad_used_opt = -MaskOptimizer.gradient(self.selector.model, m_best_used_features)[0][0, :]
importances = grad_used_opt
if(return_chosen_features==False):
print("FeatureSelector.get_importances end=============")
return importances
else:
optimal_mask = m_best_used_features[0]
print("FeatureSelector.get_importances end=============")
return importances, optimal_mask
Execute
Data Load(adult>=50k)
from google.colab import drive
drive.mount('/content/drive')
data_path = "/content/drive/MyDrive/capstone/data/adult.data"
ALL_FIELDS = ['age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', 'relationship', 'race',
'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'country']
CONT_FIELDS = ['age', 'fnlwgt', 'education-num',
'capital-gain', 'capital-loss', 'hours-per-week']
CAT_FIELDS = list(set(ALL_FIELDS).difference(CONT_FIELDS))
IS_BIN = True
NUM_BIN = 10
dataset_label = 'adult_'
import tensorflow as tf
import numpy as np
import os
import random
SEED = 1234
def seed_everything(seed: int = 1234):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
tf.random.set_seed(seed)
seed_everything(SEED)
## Data Load & Preprocess
import numpy as np
import pandas as pd
from time import perf_counter
import tensorflow as tf
from sklearn.model_selection import train_test_split
from itertools import repeat
from sklearn.preprocessing import MinMaxScaler
import os
from numpy import count_nonzero
def get_sparsity(A):
sparsity = 1.0 - count_nonzero(A) / A.size
return sparsity
def to_categorical(columns, df):
for col in columns:
df[col] = df[col].astype('category')
return df
def get_modified_data(X, all_fields, continuous_fields, categorical_fields, is_bin=False):
field_dict = dict()
field_index = []
X_modified = pd.DataFrame()
for index, col in enumerate(X.columns):
if col not in all_fields:
print("{} not included: Check your column list".format(col))
raise ValueError
if col in continuous_fields:
scaler = MinMaxScaler()
# 연속형 변수도 구간화 할 것인가?
if is_bin:
X_bin = pd.cut(scaler.fit_transform(X[[col]]).reshape(-1, ), NUM_BIN, labels=False)
X_bin = pd.Series(X_bin).astype('str')
X_bin_col = pd.get_dummies(X_bin, prefix=col, prefix_sep='-')
field_dict[index] = list(X_bin_col.columns)
field_index.extend(repeat(index, X_bin_col.shape[1]))
X_modified = pd.concat([X_modified, X_bin_col], axis=1)
else:
X_cont_col = pd.DataFrame(scaler.fit_transform(X[[col]]), columns=[col])
field_dict[index] = col
field_index.append(index)
X_modified = pd.concat([X_modified, X_cont_col], axis=1)
if col in categorical_fields:
X_cat_col = pd.get_dummies(X[col], prefix=col, prefix_sep='-')
field_dict[index] = list(X_cat_col.columns)
field_index.extend(repeat(index, X_cat_col.shape[1]))
X_modified = pd.concat([X_modified, X_cat_col], axis=1)
print('Data Prepared...')
print('X shape: {}'.format(X_modified.shape))
print('# of Feature: {}'.format(len(field_index)))
print('# of Field: {}'.format(len(field_dict)))
return field_dict, field_index, X_modified
def get_data():
file = pd.read_csv(data_path, header=None)
X = file.loc[:, 0:13]
Y = file.loc[:, 14].map({' <=50K': 0, ' >50K': 1})
X.columns = ALL_FIELDS
field_dict, field_index, X_modified = \
get_modified_data(X, ALL_FIELDS, CONT_FIELDS, CAT_FIELDS, IS_BIN)
X_numpy = tf.cast(X_modified.values, tf.float32).numpy()
sparsity = get_sparsity(X_numpy)
print('Data Sparsity : {:.4f}'.format(sparsity))
X_train, X_test, Y_train, Y_test = train_test_split(X_modified, Y, test_size=0.2, stratify=Y, shuffle=True, random_state=SEED)
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.25, stratify=Y_train, shuffle=True) # 0.25 x 0.8 = 0.2
X_tr = tf.cast(X_train.values, tf.float32).numpy()
y_tr = tf.cast(Y_train, tf.float32).numpy()
X_val = tf.cast(X_val, tf.float32).numpy()
y_val = tf.cast(Y_val, tf.float32).numpy()
X_te = tf.cast(X_test.values, tf.float32).numpy()
y_te = tf.cast(Y_test, tf.float32).numpy()
return X_tr, y_tr, X_val, y_val, X_te, y_te, field_dict, field_index
## Load Data
X_tr, y_tr, X_val, y_val, X_te, y_te, field_dict, field_index = get_data()
model_save_path = '/content/drive/MyDrive/capstone/result/adult/'
Data Prepared...
X shape: (32561, 157)
# of Feature: 157
# of Field: 14
Data Sparsity : 0.9108
Parameter Settings
import numpy as np
import os
import tensorflow.keras as keras
from tensorflow.keras import backend as K
dataset_label = "_avazu"
NUM_BIN= 10
EMBEDDING_SIZE = 5
SEED = 1234
np.random.seed(SEED)
# Dataset parameters
N_FEATURES = len(field_index)
FEATURE_SHAPE = (N_FEATURES,)
num_feature=len(field_index),
num_field=len(field_dict)
# Training parapmeters for FIR
data_batch_size = 16 # BATCH_SIZE
mask_batch_size = 16 # BATCH_SIZ8
BATCH_SIZE = data_batch_size * mask_batch_size
# final batch_size is data_batch_size x mask_batch_size
fraction = 0.5
s = int(N_FEATURES*fraction) # size of optimal subset that we are looking for
print(f"s={s}")
s_p = 2 # number of flipped bits in a mask when looking around m_opt
phase_2_start = 200 # after how many batches phase 2 will begin
max_batches = 750 # how many batches if the early stopping condition not satisfied
early_stopping_patience = 20 # how many patience batches (after phase 2 starts)
# before the training stops
operator_dense = [300, 200, 100, 1]
selector_dense = [300, 200, 100, 1]
model_save_path = '/content/drive/MyDrive/capstone/result/'
%%time
print("********* FIR *****************")
# Create the framework, needs number of features and batch_sizes
fs = FeatureSelector(FEATURE_SHAPE, s, data_batch_size, mask_batch_size)
# Create a dense operator net, uses the architecture:
# with sigmoid activation in the final layer.
fs.create_dense_operator(
operator_dense, "sigmoid",
metrics=[keras.metrics.AUC(), keras.metrics.BinaryAccuracy(), keras.metrics.Precision(), keras.metrics.Recall()],
error_func=K.binary_crossentropy)
# Ealy stopping activate after the phase2 of the training starts.
fs.operator.set_early_stopping_params(phase_2_start, patience_batches=early_stopping_patience, minimize=True)
# Create a dense selector net, uses the architecture:
fs.create_dense_selector(selector_dense)
# Set when the phase2 starts, what is the number of flipped bits when perturbin masks
fs.create_mask_optimizer(epoch_condition=phase_2_start, perturbation_size=s_p)
start = perf_counter()
#Train networks and set the maximum number of iterations
fs.train_networks_on_data(X_tr, y_tr, max_batches, val_data=(X_val, y_val))
time = perf_counter() - start
print("Training Time : {:.3f}".format(time))
#Results
fir_importances, optimal_mask = fs.get_importances(return_chosen_features=True)
fir_optimal_subset = np.nonzero(optimal_mask)
test_performance = fs.operator.test_one(X_te, optimal_mask[None,:], y_te)
print("Importances: ", fir_importances)
print("Optimal_subset: ", fir_optimal_subset)
print("Test performance (CE): ", test_performance[0])
print("Test performance (AUC): ", test_performance[1])
print("Test performance (ACC):", test_performance[2])
print("Test performance (precision):", test_performance[3])
print("Test performance (recall):", test_performance[4])
fs.operator.model.save_weights(
model_save_path +
'fir-s({})-phase2start({})-max({})-batch({})-k({})-AUC({:.4f})-CE({:.4f})-ACC({:.4f})-Precision({:.4f})-Recall({:.4f})-th({})-time({:.2f})).h5'.format(
fraction, phase_2_start,max_batches, data_batch_size, EMBEDDING_SIZE, test_performance[1],test_performance[0], test_performance[2], test_performance[3], test_performance[4], time
)
)
********* FIR *****************
============ FeatureSelector start=============
FeatureSelector.create_dense_operator start=============
============ OperatorNet start=============
Creating operator model
Object network model built:
Compiling operator
Created operator
FeatureSelector.create_dense_operator end =============
FeatureSelector.create_dense_selector start=============
============ SelectorNet start=============
Subject Network model built:
FeatureSelector.create_dense_selector end=============
FeatureSelector.create_mask_optimizer start=============
============ MaskOptimizer start=============
FeatureSelector.create_mask_optimizer end=============
FeatureSelector.train_networks_on_data start=============
Training batch: [..................................................] 0/750 mopt epoch_counter : 1
Train Epoch 000: operator losses : 0.8934
Training batch: [..................................................] 1/750 mopt epoch_counter : 2
Train Epoch 001: operator losses : 0.5683
Training batch: [..................................................] 2/750 mopt epoch_counter : 3
Train Epoch 002: operator losses : 0.5612
Training batch: [..................................................] 3/750 mopt epoch_counter : 4
Train Epoch 003: operator losses : 0.7003
Training batch: [..................................................] 4/750 mopt epoch_counter : 5
Train Epoch 004: operator losses : 0.5710
Training batch: [..................................................] 5/750 mopt epoch_counter : 6
Train Epoch 005: operator losses : 0.8005
Training batch: [..................................................] 6/750 mopt epoch_counter : 7
Train Epoch 006: operator losses : 0.5909
Training batch: [..................................................] 7/750 mopt epoch_counter : 8
Train Epoch 007: operator losses : 0.6140
Training batch: [..................................................] 8/750 mopt epoch_counter : 9
Train Epoch 008: operator losses : 0.4213
Training batch: [..................................................] 9/750 mopt epoch_counter : 10
Train Epoch 009: operator losses : 0.3054
Training batch: [..................................................] 10/750 mopt epoch_counter : 11
Train Epoch 010: operator losses : 0.6182
Training batch: [..................................................] 11/750 mopt epoch_counter : 12
Train Epoch 011: operator losses : 0.5673
Training batch: [..................................................] 12/750 mopt epoch_counter : 13
Train Epoch 012: operator losses : 0.4639
Training batch: [..................................................] 13/750 mopt epoch_counter : 14
Train Epoch 013: operator losses : 0.5605
Training batch: [..................................................] 14/750 mopt epoch_counter : 15
Train Epoch 014: operator losses : 0.6312
Training batch: [#.................................................] 15/750 mopt epoch_counter : 16
Train Epoch 015: operator losses : 0.6145
Training batch: [#.................................................] 16/750 mopt epoch_counter : 17
Train Epoch 016: operator losses : 0.4984
Training batch: [#.................................................] 17/750 mopt epoch_counter : 18
Train Epoch 017: operator losses : 0.4780
Training batch: [#.................................................] 18/750 mopt epoch_counter : 19
Train Epoch 018: operator losses : 0.3883
Training batch: [#.................................................] 19/750 mopt epoch_counter : 20
Train Epoch 019: operator losses : 0.7570
Training batch: [#.................................................] 20/750 mopt epoch_counter : 21
Train Epoch 020: operator losses : 0.6480
Training batch: [#.................................................] 21/750 mopt epoch_counter : 22
Train Epoch 021: operator losses : 0.4840
Training batch: [#.................................................] 22/750 mopt epoch_counter : 23
Train Epoch 022: operator losses : 0.3882
Training batch: [#.................................................] 23/750 mopt epoch_counter : 24
Train Epoch 023: operator losses : 0.4721
Training batch: [#.................................................] 24/750 mopt epoch_counter : 25
Train Epoch 024: operator losses : 0.4542
Training batch: [#.................................................] 25/750 mopt epoch_counter : 26
Train Epoch 025: operator losses : 0.4766
Training batch: [#.................................................] 26/750 mopt epoch_counter : 27
Train Epoch 026: operator losses : 0.3760
Training batch: [#.................................................] 27/750 mopt epoch_counter : 28
Train Epoch 027: operator losses : 0.3581
Training batch: [#.................................................] 28/750 mopt epoch_counter : 29
Train Epoch 028: operator losses : 0.7048
Training batch: [#.................................................] 29/750 mopt epoch_counter : 30
Train Epoch 029: operator losses : 0.6544
Training batch: [##................................................] 30/750 mopt epoch_counter : 31
Train Epoch 030: operator losses : 0.5599
Training batch: [##................................................] 31/750 mopt epoch_counter : 32
Train Epoch 031: operator losses : 0.6023
Training batch: [##................................................] 32/750 mopt epoch_counter : 33
Train Epoch 032: operator losses : 0.4274
Training batch: [##................................................] 33/750 mopt epoch_counter : 34
Train Epoch 033: operator losses : 0.6793
Training batch: [##................................................] 34/750 mopt epoch_counter : 35
Train Epoch 034: operator losses : 0.5867
Training batch: [##................................................] 35/750 mopt epoch_counter : 36
Train Epoch 035: operator losses : 0.5952
Training batch: [##................................................] 36/750 mopt epoch_counter : 37
Train Epoch 036: operator losses : 0.5606
Training batch: [##................................................] 37/750 mopt epoch_counter : 38
Train Epoch 037: operator losses : 0.4556
Training batch: [##................................................] 38/750 mopt epoch_counter : 39
Train Epoch 038: operator losses : 0.6404
Training batch: [##................................................] 39/750 mopt epoch_counter : 40
Train Epoch 039: operator losses : 0.3403
Training batch: [##................................................] 40/750 mopt epoch_counter : 41
Train Epoch 040: operator losses : 0.4657
Training batch: [##................................................] 41/750 mopt epoch_counter : 42
Train Epoch 041: operator losses : 0.5197
Training batch: [##................................................] 42/750 mopt epoch_counter : 43
Train Epoch 042: operator losses : 0.4757
Training batch: [##................................................] 43/750 mopt epoch_counter : 44
Train Epoch 043: operator losses : 0.4628
Training batch: [##................................................] 44/750 mopt epoch_counter : 45
Train Epoch 044: operator losses : 0.3549
Training batch: [###...............................................] 45/750 mopt epoch_counter : 46
Train Epoch 045: operator losses : 0.5565
Training batch: [###...............................................] 46/750 mopt epoch_counter : 47
Train Epoch 046: operator losses : 0.3848
Training batch: [###...............................................] 47/750 mopt epoch_counter : 48
Train Epoch 047: operator losses : 0.2513
Training batch: [###...............................................] 48/750 mopt epoch_counter : 49
Train Epoch 048: operator losses : 1.1857
Training batch: [###...............................................] 49/750 mopt epoch_counter : 50
Train Epoch 049: operator losses : 0.4756
Training batch: [###...............................................] 50/750 mopt epoch_counter : 51
Train Epoch 050: operator losses : 0.4974
Training batch: [###...............................................] 51/750 mopt epoch_counter : 52
Train Epoch 051: operator losses : 0.6123
Training batch: [###...............................................] 52/750 mopt epoch_counter : 53
Train Epoch 052: operator losses : 0.5305
Training batch: [###...............................................] 53/750 mopt epoch_counter : 54
Train Epoch 053: operator losses : 0.4218
Training batch: [###...............................................] 54/750 mopt epoch_counter : 55
Train Epoch 054: operator losses : 0.5665
Training batch: [###...............................................] 55/750 mopt epoch_counter : 56
Train Epoch 055: operator losses : 0.3664
Training batch: [###...............................................] 56/750 mopt epoch_counter : 57
Train Epoch 056: operator losses : 0.6380
Training batch: [###...............................................] 57/750 mopt epoch_counter : 58
Train Epoch 057: operator losses : 0.6536
Training batch: [###...............................................] 58/750 mopt epoch_counter : 59
Train Epoch 058: operator losses : 0.3961
Training batch: [###...............................................] 59/750 mopt epoch_counter : 60
Train Epoch 059: operator losses : 0.3626
Training batch: [####..............................................] 60/750 mopt epoch_counter : 61
Train Epoch 060: operator losses : 0.4474
Training batch: [####..............................................] 61/750 mopt epoch_counter : 62
Train Epoch 061: operator losses : 0.4745
Training batch: [####..............................................] 62/750 mopt epoch_counter : 63
Train Epoch 062: operator losses : 0.5400
Training batch: [####..............................................] 63/750 mopt epoch_counter : 64
Train Epoch 063: operator losses : 0.5129
Training batch: [####..............................................] 64/750 mopt epoch_counter : 65
Train Epoch 064: operator losses : 0.5107
Training batch: [####..............................................] 65/750 mopt epoch_counter : 66
Train Epoch 065: operator losses : 0.5201
Training batch: [####..............................................] 66/750 mopt epoch_counter : 67
Train Epoch 066: operator losses : 0.4152
Training batch: [####..............................................] 67/750 mopt epoch_counter : 68
Train Epoch 067: operator losses : 0.4445
Training batch: [####..............................................] 68/750 mopt epoch_counter : 69
Train Epoch 068: operator losses : 0.3129
Training batch: [####..............................................] 69/750 mopt epoch_counter : 70
Train Epoch 069: operator losses : 0.6036
Training batch: [####..............................................] 70/750 mopt epoch_counter : 71
Train Epoch 070: operator losses : 0.4588
Training batch: [####..............................................] 71/750 mopt epoch_counter : 72
Train Epoch 071: operator losses : 0.5296
Training batch: [####..............................................] 72/750 mopt epoch_counter : 73
Train Epoch 072: operator losses : 0.2882
Training batch: [####..............................................] 73/750 mopt epoch_counter : 74
Train Epoch 073: operator losses : 0.5558
Training batch: [####..............................................] 74/750 mopt epoch_counter : 75
Train Epoch 074: operator losses : 0.4604
Training batch: [#####.............................................] 75/750 mopt epoch_counter : 76
Train Epoch 075: operator losses : 0.3666
Training batch: [#####.............................................] 76/750 mopt epoch_counter : 77
Train Epoch 076: operator losses : 0.5483
Training batch: [#####.............................................] 77/750 mopt epoch_counter : 78
Train Epoch 077: operator losses : 0.4142
Training batch: [#####.............................................] 78/750 mopt epoch_counter : 79
Train Epoch 078: operator losses : 0.7508
Training batch: [#####.............................................] 79/750 mopt epoch_counter : 80
Train Epoch 079: operator losses : 0.6016
Training batch: [#####.............................................] 80/750 mopt epoch_counter : 81
Train Epoch 080: operator losses : 0.4657
Training batch: [#####.............................................] 81/750 mopt epoch_counter : 82
Train Epoch 081: operator losses : 0.4423
Training batch: [#####.............................................] 82/750 mopt epoch_counter : 83
Train Epoch 082: operator losses : 0.5648
Training batch: [#####.............................................] 83/750 mopt epoch_counter : 84
Train Epoch 083: operator losses : 0.3720
Training batch: [#####.............................................] 84/750 mopt epoch_counter : 85
Train Epoch 084: operator losses : 0.3513
Training batch: [#####.............................................] 85/750 mopt epoch_counter : 86
Train Epoch 085: operator losses : 0.7044
Training batch: [#####.............................................] 86/750 mopt epoch_counter : 87
Train Epoch 086: operator losses : 0.4820
Training batch: [#####.............................................] 87/750 mopt epoch_counter : 88
Train Epoch 087: operator losses : 0.3661
Training batch: [#####.............................................] 88/750 mopt epoch_counter : 89
Train Epoch 088: operator losses : 0.1887
Training batch: [#####.............................................] 89/750 mopt epoch_counter : 90
Train Epoch 089: operator losses : 0.7602
Training batch: [######............................................] 90/750 mopt epoch_counter : 91
Train Epoch 090: operator losses : 0.4229
Training batch: [######............................................] 91/750 mopt epoch_counter : 92
Train Epoch 091: operator losses : 0.3689
Training batch: [######............................................] 92/750 mopt epoch_counter : 93
Train Epoch 092: operator losses : 0.3749
Training batch: [######............................................] 93/750 mopt epoch_counter : 94
Train Epoch 093: operator losses : 0.2229
Training batch: [######............................................] 94/750 mopt epoch_counter : 95
Train Epoch 094: operator losses : 0.3505
Training batch: [######............................................] 95/750 mopt epoch_counter : 96
Train Epoch 095: operator losses : 0.2722
Training batch: [######............................................] 96/750 mopt epoch_counter : 97
Train Epoch 096: operator losses : 0.4100
Training batch: [######............................................] 97/750 mopt epoch_counter : 98
Train Epoch 097: operator losses : 0.4538
Training batch: [######............................................] 98/750 mopt epoch_counter : 99
Train Epoch 098: operator losses : 0.3928
Training batch: [######............................................] 99/750 mopt epoch_counter : 100
Train Epoch 099: operator losses : 0.4214
Training batch: [######............................................] 100/750 mopt epoch_counter : 101
Train Epoch 100: operator losses : 0.2741
Training batch: [######............................................] 101/750 mopt epoch_counter : 102
Train Epoch 101: operator losses : 0.5836
Training batch: [######............................................] 102/750 mopt epoch_counter : 103
Train Epoch 102: operator losses : 0.2729
Training batch: [######............................................] 103/750 mopt epoch_counter : 104
Train Epoch 103: operator losses : 0.3443
Training batch: [######............................................] 104/750 mopt epoch_counter : 105
Train Epoch 104: operator losses : 0.5155
Training batch: [#######...........................................] 105/750 mopt epoch_counter : 106
Train Epoch 105: operator losses : 0.4513
Training batch: [#######...........................................] 106/750 mopt epoch_counter : 107
Train Epoch 106: operator losses : 0.3680
Training batch: [#######...........................................] 107/750 mopt epoch_counter : 108
Train Epoch 107: operator losses : 0.3633
Training batch: [#######...........................................] 108/750 mopt epoch_counter : 109
Train Epoch 108: operator losses : 0.2864
Training batch: [#######...........................................] 109/750 mopt epoch_counter : 110
Train Epoch 109: operator losses : 0.3907
Training batch: [#######...........................................] 110/750 mopt epoch_counter : 111
Train Epoch 110: operator losses : 0.3788
Training batch: [#######...........................................] 111/750 mopt epoch_counter : 112
Train Epoch 111: operator losses : 0.3916
Training batch: [#######...........................................] 112/750 mopt epoch_counter : 113
Train Epoch 112: operator losses : 0.3078
Training batch: [#######...........................................] 113/750 mopt epoch_counter : 114
Train Epoch 113: operator losses : 0.3566
Training batch: [#######...........................................] 114/750 mopt epoch_counter : 115
Train Epoch 114: operator losses : 0.6127
Training batch: [#######...........................................] 115/750 mopt epoch_counter : 116
Train Epoch 115: operator losses : 0.6971
Training batch: [#######...........................................] 116/750 mopt epoch_counter : 117
Train Epoch 116: operator losses : 0.4466
Training batch: [#######...........................................] 117/750 mopt epoch_counter : 118
Train Epoch 117: operator losses : 0.2950
Training batch: [#######...........................................] 118/750 mopt epoch_counter : 119
Train Epoch 118: operator losses : 0.5945
Training batch: [#######...........................................] 119/750 mopt epoch_counter : 120
Train Epoch 119: operator losses : 0.2747
Training batch: [########..........................................] 120/750 mopt epoch_counter : 121
Train Epoch 120: operator losses : 0.5157
Training batch: [########..........................................] 121/750 mopt epoch_counter : 122
Train Epoch 121: operator losses : 0.4356
Training batch: [########..........................................] 122/750 mopt epoch_counter : 123
Train Epoch 122: operator losses : 0.3179
Training batch: [########..........................................] 123/750 mopt epoch_counter : 124
Train Epoch 123: operator losses : 0.4244
Training batch: [########..........................................] 124/750 mopt epoch_counter : 125
Train Epoch 124: operator losses : 0.3388
Training batch: [########..........................................] 125/750 mopt epoch_counter : 126
Train Epoch 125: operator losses : 0.3117
Training batch: [########..........................................] 126/750 mopt epoch_counter : 127
Train Epoch 126: operator losses : 0.1571
Training batch: [########..........................................] 127/750 mopt epoch_counter : 128
Train Epoch 127: operator losses : 0.5983
Training batch: [########..........................................] 128/750 mopt epoch_counter : 129
Train Epoch 128: operator losses : 0.4289
Training batch: [########..........................................] 129/750 mopt epoch_counter : 130
Train Epoch 129: operator losses : 0.3531
Training batch: [########..........................................] 130/750 mopt epoch_counter : 131
Train Epoch 130: operator losses : 0.3955
Training batch: [########..........................................] 131/750 mopt epoch_counter : 132
Train Epoch 131: operator losses : 0.4795
Training batch: [########..........................................] 132/750 mopt epoch_counter : 133
Train Epoch 132: operator losses : 0.4301
Training batch: [########..........................................] 133/750 mopt epoch_counter : 134
Train Epoch 133: operator losses : 0.3033
Training batch: [########..........................................] 134/750 mopt epoch_counter : 135
Train Epoch 134: operator losses : 0.3705
Training batch: [#########.........................................] 135/750 mopt epoch_counter : 136
Train Epoch 135: operator losses : 0.5858
Training batch: [#########.........................................] 136/750 mopt epoch_counter : 137
Train Epoch 136: operator losses : 0.5220
Training batch: [#########.........................................] 137/750 mopt epoch_counter : 138
Train Epoch 137: operator losses : 0.5445
Training batch: [#########.........................................] 138/750 mopt epoch_counter : 139
Train Epoch 138: operator losses : 0.2919
Training batch: [#########.........................................] 139/750 mopt epoch_counter : 140
Train Epoch 139: operator losses : 0.4099
Training batch: [#########.........................................] 140/750 mopt epoch_counter : 141
Train Epoch 140: operator losses : 0.2372
Training batch: [#########.........................................] 141/750 mopt epoch_counter : 142
Train Epoch 141: operator losses : 0.3644
Training batch: [#########.........................................] 142/750 mopt epoch_counter : 143
Train Epoch 142: operator losses : 0.5073
Training batch: [#########.........................................] 143/750 mopt epoch_counter : 144
Train Epoch 143: operator losses : 0.4671
Training batch: [#########.........................................] 144/750 mopt epoch_counter : 145
Train Epoch 144: operator losses : 0.2450
Training batch: [#########.........................................] 145/750 mopt epoch_counter : 146
Train Epoch 145: operator losses : 0.4926
Training batch: [#########.........................................] 146/750 mopt epoch_counter : 147
Train Epoch 146: operator losses : 0.2865
Training batch: [#########.........................................] 147/750 mopt epoch_counter : 148
Train Epoch 147: operator losses : 0.1857
Training batch: [#########.........................................] 148/750 mopt epoch_counter : 149
Train Epoch 148: operator losses : 0.2958
Training batch: [#########.........................................] 149/750 mopt epoch_counter : 150
Train Epoch 149: operator losses : 0.6528
Training batch: [##########........................................] 150/750 mopt epoch_counter : 151
Train Epoch 150: operator losses : 0.2914
Training batch: [##########........................................] 151/750 mopt epoch_counter : 152
Train Epoch 151: operator losses : 0.5116
Training batch: [##########........................................] 152/750 mopt epoch_counter : 153
Train Epoch 152: operator losses : 0.4047
Training batch: [##########........................................] 153/750 mopt epoch_counter : 154
Train Epoch 153: operator losses : 0.4681
Training batch: [##########........................................] 154/750 mopt epoch_counter : 155
Train Epoch 154: operator losses : 0.3409
Training batch: [##########........................................] 155/750 mopt epoch_counter : 156
Train Epoch 155: operator losses : 0.2911
Training batch: [##########........................................] 156/750 mopt epoch_counter : 157
Train Epoch 156: operator losses : 0.1600
Training batch: [##########........................................] 157/750 mopt epoch_counter : 158
Train Epoch 157: operator losses : 0.7661
Training batch: [##########........................................] 158/750 mopt epoch_counter : 159
Train Epoch 158: operator losses : 0.4407
Training batch: [##########........................................] 159/750 mopt epoch_counter : 160
Train Epoch 159: operator losses : 0.3450
Training batch: [##########........................................] 160/750 mopt epoch_counter : 161
Train Epoch 160: operator losses : 0.4586
Training batch: [##########........................................] 161/750 mopt epoch_counter : 162
Train Epoch 161: operator losses : 0.4475
Training batch: [##########........................................] 162/750 mopt epoch_counter : 163
Train Epoch 162: operator losses : 0.4318
Training batch: [##########........................................] 163/750 mopt epoch_counter : 164
Train Epoch 163: operator losses : 0.5547
Training batch: [##########........................................] 164/750 mopt epoch_counter : 165
Train Epoch 164: operator losses : 0.4641
Training batch: [###########.......................................] 165/750 mopt epoch_counter : 166
Train Epoch 165: operator losses : 0.3533
Training batch: [###########.......................................] 166/750 mopt epoch_counter : 167
Train Epoch 166: operator losses : 0.2778
Training batch: [###########.......................................] 167/750 mopt epoch_counter : 168
Train Epoch 167: operator losses : 0.2578
Training batch: [###########.......................................] 168/750 mopt epoch_counter : 169
Train Epoch 168: operator losses : 0.1820
Training batch: [###########.......................................] 169/750 mopt epoch_counter : 170
Train Epoch 169: operator losses : 0.5674
Training batch: [###########.......................................] 170/750 mopt epoch_counter : 171
Train Epoch 170: operator losses : 0.4054
Training batch: [###########.......................................] 171/750 mopt epoch_counter : 172
Train Epoch 171: operator losses : 0.5075
Training batch: [###########.......................................] 172/750 mopt epoch_counter : 173
Train Epoch 172: operator losses : 0.3920
Training batch: [###########.......................................] 173/750 mopt epoch_counter : 174
Train Epoch 173: operator losses : 0.4088
Training batch: [###########.......................................] 174/750 mopt epoch_counter : 175
Train Epoch 174: operator losses : 0.4977
Training batch: [###########.......................................] 175/750 mopt epoch_counter : 176
Train Epoch 175: operator losses : 0.5630
Training batch: [###########.......................................] 176/750 mopt epoch_counter : 177
Train Epoch 176: operator losses : 0.4343
Training batch: [###########.......................................] 177/750 mopt epoch_counter : 178
Train Epoch 177: operator losses : 0.3639
Training batch: [###########.......................................] 178/750 mopt epoch_counter : 179
Train Epoch 178: operator losses : 0.2925
Training batch: [###########.......................................] 179/750 mopt epoch_counter : 180
Train Epoch 179: operator losses : 0.7215
Training batch: [############......................................] 180/750 mopt epoch_counter : 181
Train Epoch 180: operator losses : 0.3118
Training batch: [############......................................] 181/750 mopt epoch_counter : 182
Train Epoch 181: operator losses : 0.2277
Training batch: [############......................................] 182/750 mopt epoch_counter : 183
Train Epoch 182: operator losses : 0.3182
Training batch: [############......................................] 183/750 mopt epoch_counter : 184
Train Epoch 183: operator losses : 0.4598
Training batch: [############......................................] 184/750 mopt epoch_counter : 185
Train Epoch 184: operator losses : 0.5541
Training batch: [############......................................] 185/750 mopt epoch_counter : 186
Train Epoch 185: operator losses : 0.5349
Training batch: [############......................................] 186/750 mopt epoch_counter : 187
Train Epoch 186: operator losses : 0.5290
Training batch: [############......................................] 187/750 mopt epoch_counter : 188
Train Epoch 187: operator losses : 0.5573
Training batch: [############......................................] 188/750 mopt epoch_counter : 189
Train Epoch 188: operator losses : 0.2634
Training batch: [############......................................] 189/750 mopt epoch_counter : 190
Train Epoch 189: operator losses : 0.4337
Training batch: [############......................................] 190/750 mopt epoch_counter : 191
Train Epoch 190: operator losses : 0.3643
Training batch: [############......................................] 191/750 mopt epoch_counter : 192
Train Epoch 191: operator losses : 0.4050
Training batch: [############......................................] 192/750 mopt epoch_counter : 193
Train Epoch 192: operator losses : 0.3919
Training batch: [############......................................] 193/750 mopt epoch_counter : 194
Train Epoch 193: operator losses : 0.4231
Training batch: [############......................................] 194/750 mopt epoch_counter : 195
Train Epoch 194: operator losses : 0.3707
Training batch: [#############.....................................] 195/750 mopt epoch_counter : 196
Train Epoch 195: operator losses : 0.2615
Training batch: [#############.....................................] 196/750 mopt epoch_counter : 197
Train Epoch 196: operator losses : 0.4766
Training batch: [#############.....................................] 197/750 mopt epoch_counter : 198
Train Epoch 197: operator losses : 0.2521
Training batch: [#############.....................................] 198/750 mopt epoch_counter : 199
Train Epoch 198: operator losses : 0.2932
Training batch: [#############.....................................] 199/750 mopt epoch_counter : 200
Train Epoch 199: operator losses : 0.2020
Training batch: [#############.....................................] 200/750 mopt epoch_counter : 201
Train Epoch 200: operator losses : 0.5278
Training batch: [#############.....................................] 201/750 mopt epoch_counter : 202
Train Epoch 201: operator losses : 0.3371
Training batch: [#############.....................................] 202/750 mopt epoch_counter : 203
Train Epoch 202: operator losses : 0.3049
Training batch: [#############.....................................] 203/750 mopt epoch_counter : 204
Train Epoch 203: operator losses : 0.3771
Training batch: [#############.....................................] 204/750 mopt epoch_counter : 205
Train Epoch 204: operator losses : 0.3180
Training batch: [#############.....................................] 205/750 mopt epoch_counter : 206
Train Epoch 205: operator losses : 0.3789
Training batch: [#############.....................................] 206/750 mopt epoch_counter : 207
Train Epoch 206: operator losses : 0.5267
Training batch: [#############.....................................] 207/750 mopt epoch_counter : 208
Train Epoch 207: operator losses : 0.2028
Training batch: [#############.....................................] 208/750 mopt epoch_counter : 209
Train Epoch 208: operator losses : 0.6826
Training batch: [#############.....................................] 209/750 mopt epoch_counter : 210
Train Epoch 209: operator losses : 0.5429
Training batch: [##############....................................] 210/750 mopt epoch_counter : 211
Train Epoch 210: operator losses : 0.5843
Training batch: [##############....................................] 211/750 mopt epoch_counter : 212
Train Epoch 211: operator losses : 0.3955
Training batch: [##############....................................] 212/750 mopt epoch_counter : 213
Train Epoch 212: operator losses : 0.4325
Training batch: [##############....................................] 213/750 mopt epoch_counter : 214
Train Epoch 213: operator losses : 0.4893
Training batch: [##############....................................] 214/750 mopt epoch_counter : 215
Train Epoch 214: operator losses : 0.3573
Training batch: [##############....................................] 215/750 mopt epoch_counter : 216
Train Epoch 215: operator losses : 0.5351
Training batch: [##############....................................] 216/750 mopt epoch_counter : 217
Train Epoch 216: operator losses : 0.4197
Training batch: [##############....................................] 217/750 mopt epoch_counter : 218
Train Epoch 217: operator losses : 0.4420
Training batch: [##############....................................] 218/750 mopt epoch_counter : 219
Train Epoch 218: operator losses : 0.4963
Training batch: [##############....................................] 219/750 mopt epoch_counter : 220
Train Epoch 219: operator losses : 0.4313
Training batch: [##############....................................] 220/750 mopt epoch_counter : 221
Train Epoch 220: operator losses : 0.4075
Training batch: [##############....................................] 221/750 mopt epoch_counter : 222
Train Epoch 221: operator losses : 0.4118
Training batch: [##############....................................] 222/750 mopt epoch_counter : 223
Train Epoch 222: operator losses : 0.4801
Training batch: [##############....................................] 223/750 mopt epoch_counter : 224
Train Epoch 223: operator losses : 0.4226
Training batch: [##############....................................] 224/750 mopt epoch_counter : 225
Train Epoch 224: operator losses : 0.2806
Training batch: [###############...................................] 225/750 mopt epoch_counter : 226
Train Epoch 225: operator losses : 0.3044
Training batch: [###############...................................] 226/750 mopt epoch_counter : 227
Train Epoch 226: operator losses : 0.2550
Training batch: [###############...................................] 227/750 mopt epoch_counter : 228
Train Epoch 227: operator losses : 0.4965
Training batch: [###############...................................] 228/750 mopt epoch_counter : 229
Train Epoch 228: operator losses : 0.3955
Training batch: [###############...................................] 229/750 mopt epoch_counter : 230
Train Epoch 229: operator losses : 0.5043
Training batch: [###############...................................] 230/750 mopt epoch_counter : 231
Train Epoch 230: operator losses : 0.4053
Training batch: [###############...................................] 231/750 mopt epoch_counter : 232
Train Epoch 231: operator losses : 0.8082
Training batch: [###############...................................] 232/750 mopt epoch_counter : 233
Train Epoch 232: operator losses : 0.5328
Training batch: [###############...................................] 233/750 mopt epoch_counter : 234
Train Epoch 233: operator losses : 0.5447
Training batch: [###############...................................] 234/750 mopt epoch_counter : 235
Train Epoch 234: operator losses : 0.2612
Training batch: [###############...................................] 235/750 mopt epoch_counter : 236
Train Epoch 235: operator losses : 0.5136
Training batch: [###############...................................] 236/750 mopt epoch_counter : 237
Train Epoch 236: operator losses : 0.3602
Training batch: [###############...................................] 237/750 mopt epoch_counter : 238
Train Epoch 237: operator losses : 0.2475
Training batch: [###############...................................] 238/750 mopt epoch_counter : 239
Train Epoch 238: operator losses : 0.6900
Training batch: [###############...................................] 239/750 mopt epoch_counter : 240
Train Epoch 239: operator losses : 0.4110
Training batch: [################..................................] 240/750 mopt epoch_counter : 241
Train Epoch 240: operator losses : 0.3786
Training batch: [################..................................] 241/750 mopt epoch_counter : 242
Train Epoch 241: operator losses : 0.4814
Training batch: [################..................................] 242/750 mopt epoch_counter : 243
Train Epoch 242: operator losses : 0.4623
Training batch: [################..................................] 243/750 mopt epoch_counter : 244
Train Epoch 243: operator losses : 0.4815
Training batch: [################..................................] 244/750 mopt epoch_counter : 245
Train Epoch 244: operator losses : 0.5270
Training batch: [################..................................] 245/750 mopt epoch_counter : 246
Train Epoch 245: operator losses : 0.2804
Training batch: [################..................................] 246/750 mopt epoch_counter : 247
Train Epoch 246: operator losses : 0.7529
Training batch: [################..................................] 247/750 mopt epoch_counter : 248
Train Epoch 247: operator losses : 0.4568
Training batch: [################..................................] 248/750 mopt epoch_counter : 249
Train Epoch 248: operator losses : 0.5148
Training batch: [################..................................] 249/750 mopt epoch_counter : 250
Train Epoch 249: operator losses : 0.3733
Training batch: [################..................................] 250/750 mopt epoch_counter : 251
Train Epoch 250: operator losses : 0.4889
Training batch: [################..................................] 251/750 mopt epoch_counter : 252
Train Epoch 251: operator losses : 0.2330
Training batch: [################..................................] 252/750 mopt epoch_counter : 253
Train Epoch 252: operator losses : 0.4377
Training batch: [################..................................] 253/750 mopt epoch_counter : 254
Train Epoch 253: operator losses : 0.1501
Training batch: [################..................................] 254/750 mopt epoch_counter : 255
Train Epoch 254: operator losses : 0.3113
Training batch: [#################.................................] 255/750 mopt epoch_counter : 256
Train Epoch 255: operator losses : 0.3647
Training batch: [#################.................................] 256/750 mopt epoch_counter : 257
Train Epoch 256: operator losses : 0.4403
Training batch: [#################.................................] 257/750 mopt epoch_counter : 258
Train Epoch 257: operator losses : 0.5334
Training batch: [#################.................................] 258/750 mopt epoch_counter : 259
Train Epoch 258: operator losses : 0.4203
Training batch: [#################.................................] 259/750 mopt epoch_counter : 260
Train Epoch 259: operator losses : 0.4666
Training batch: [#################.................................] 260/750 mopt epoch_counter : 261
Train Epoch 260: operator losses : 0.3518
Training batch: [#################.................................] 261/750 mopt epoch_counter : 262
Train Epoch 261: operator losses : 0.4244
Training batch: [#################.................................] 262/750 mopt epoch_counter : 263
Train Epoch 262: operator losses : 0.3750
Training batch: [#################.................................] 263/750 mopt epoch_counter : 264
Train Epoch 263: operator losses : 0.4287
Training batch: [#################.................................] 264/750 mopt epoch_counter : 265
Train Epoch 264: operator losses : 0.3126
Training batch: [#################.................................] 265/750 mopt epoch_counter : 266
Train Epoch 265: operator losses : 0.4360
Training batch: [#################.................................] 266/750 mopt epoch_counter : 267
Train Epoch 266: operator losses : 0.4213
Training batch: [#################.................................] 267/750 mopt epoch_counter : 268
Train Epoch 267: operator losses : 0.3657
Training batch: [#################.................................] 268/750 mopt epoch_counter : 269
Train Epoch 268: operator losses : 0.2821
Training batch: [#################.................................] 269/750 mopt epoch_counter : 270
Train Epoch 269: operator losses : 0.6572
Training batch: [##################................................] 270/750 mopt epoch_counter : 271
Train Epoch 270: operator losses : 0.5434
Training batch: [##################................................] 271/750 mopt epoch_counter : 272
Train Epoch 271: operator losses : 0.3929
Training batch: [##################................................] 272/750 mopt epoch_counter : 273
Train Epoch 272: operator losses : 0.4175
Training batch: [##################................................] 273/750 mopt epoch_counter : 274
Train Epoch 273: operator losses : 0.5812
Training batch: [##################................................] 274/750 mopt epoch_counter : 275
Train Epoch 274: operator losses : 0.4560
Training batch: [##################................................] 275/750 mopt epoch_counter : 276
Train Epoch 275: operator losses : 0.4102
Training batch: [##################................................] 276/750 mopt epoch_counter : 277
Train Epoch 276: operator losses : 0.4091
Training batch: [##################................................] 277/750 mopt epoch_counter : 278
Train Epoch 277: operator losses : 0.3907
Training batch: [##################................................] 278/750 mopt epoch_counter : 279
Train Epoch 278: operator losses : 0.3614
Training batch: [##################................................] 279/750 mopt epoch_counter : 280
Train Epoch 279: operator losses : 0.6344
Training batch: [##################................................] 280/750 mopt epoch_counter : 281
Train Epoch 280: operator losses : 0.3407
Training batch: [##################................................] 281/750 mopt epoch_counter : 282
Train Epoch 281: operator losses : 0.2227
Training batch: [##################................................] 282/750 mopt epoch_counter : 283
Train Epoch 282: operator losses : 0.3510
Training batch: [##################................................] 283/750 mopt epoch_counter : 284
Train Epoch 283: operator losses : 0.5506
Training batch: [##################................................] 284/750 mopt epoch_counter : 285
Train Epoch 284: operator losses : 0.3857
Training batch: [###################...............................] 285/750 mopt epoch_counter : 286
Train Epoch 285: operator losses : 0.3618
Training batch: [###################...............................] 286/750 mopt epoch_counter : 287
Train Epoch 286: operator losses : 0.3304
Training batch: [###################...............................] 287/750 mopt epoch_counter : 288
Train Epoch 287: operator losses : 0.2881
Training batch: [###################...............................] 288/750 mopt epoch_counter : 289
Train Epoch 288: operator losses : 0.2720
Training batch: [###################...............................] 289/750 mopt epoch_counter : 290
Train Epoch 289: operator losses : 0.4904
Training batch: [###################...............................] 290/750 mopt epoch_counter : 291
Train Epoch 290: operator losses : 0.4846
Training batch: [###################...............................] 291/750 mopt epoch_counter : 292
Train Epoch 291: operator losses : 0.4630
Training batch: [###################...............................] 292/750 mopt epoch_counter : 293
Train Epoch 292: operator losses : 0.2427
Training batch: [###################...............................] 293/750 mopt epoch_counter : 294
Train Epoch 293: operator losses : 0.4038
Training batch: [###################...............................] 294/750 mopt epoch_counter : 295
Train Epoch 294: operator losses : 0.3657
Training batch: [###################...............................] 295/750 mopt epoch_counter : 296
Train Epoch 295: operator losses : 0.5769
Training batch: [###################...............................] 296/750 mopt epoch_counter : 297
Train Epoch 296: operator losses : 0.3621
Training batch: [###################...............................] 297/750 mopt epoch_counter : 298
Train Epoch 297: operator losses : 0.4982
Training batch: [###################...............................] 298/750 mopt epoch_counter : 299
Train Epoch 298: operator losses : 0.4033
Training batch: [###################...............................] 299/750 mopt epoch_counter : 300
Train Epoch 299: operator losses : 0.3011
Training batch: [####################..............................] 300/750 mopt epoch_counter : 301
Train Epoch 300: operator losses : 0.2126
Training batch: [####################..............................] 301/750 mopt epoch_counter : 302
Train Epoch 301: operator losses : 0.4886
Training batch: [####################..............................] 302/750 mopt epoch_counter : 303
Train Epoch 302: operator losses : 0.2439
Training batch: [####################..............................] 303/750 mopt epoch_counter : 304
Train Epoch 303: operator losses : 0.3615
Training batch: [####################..............................] 304/750 mopt epoch_counter : 305
Train Epoch 304: operator losses : 0.5473
Training batch: [####################..............................] 305/750 mopt epoch_counter : 306
Train Epoch 305: operator losses : 0.4136
Training batch: [####################..............................] 306/750 mopt epoch_counter : 307
Train Epoch 306: operator losses : 0.2377
Training batch: [####################..............................] 307/750 mopt epoch_counter : 308
Train Epoch 307: operator losses : 0.3574
Training batch: [####################..............................] 308/750 mopt epoch_counter : 309
Train Epoch 308: operator losses : 0.5564
Training batch: [####################..............................] 309/750 mopt epoch_counter : 310
Train Epoch 309: operator losses : 0.3271
Training batch: [####################..............................] 310/750 mopt epoch_counter : 311
Train Epoch 310: operator losses : 0.2566
Training batch: [####################..............................] 311/750 mopt epoch_counter : 312
Train Epoch 311: operator losses : 0.2365
Training batch: [####################..............................] 312/750 mopt epoch_counter : 313
Train Epoch 312: operator losses : 0.3554
Training batch: [####################..............................] 313/750 mopt epoch_counter : 314
Train Epoch 313: operator losses : 0.4439
Training batch: [####################..............................] 314/750 mopt epoch_counter : 315
Train Epoch 314: operator losses : 0.5920
Training batch: [#####################.............................] 315/750 mopt epoch_counter : 316
Train Epoch 315: operator losses : 0.4066
Training batch: [#####################.............................] 316/750 mopt epoch_counter : 317
Train Epoch 316: operator losses : 0.2587
Training batch: [#####################.............................] 317/750 mopt epoch_counter : 318
Train Epoch 317: operator losses : 0.4777
Training batch: [#####################.............................] 318/750 mopt epoch_counter : 319
Train Epoch 318: operator losses : 0.3701
Training batch: [#####################.............................] 319/750 mopt epoch_counter : 320
Train Epoch 319: operator losses : 0.3691
Training batch: [#####################.............................] 320/750 mopt epoch_counter : 321
Train Epoch 320: operator losses : 0.2764
Training batch: [#####################.............................] 321/750 mopt epoch_counter : 322
Train Epoch 321: operator losses : 0.4762
Training batch: [#####################.............................] 322/750 mopt epoch_counter : 323
Train Epoch 322: operator losses : 0.3228
Training batch: [#####################.............................] 323/750 mopt epoch_counter : 324
Train Epoch 323: operator losses : 0.3029
Training batch: [#####################.............................] 324/750 mopt epoch_counter : 325
Train Epoch 324: operator losses : 0.2662
Training batch: [#####################.............................] 325/750 mopt epoch_counter : 326
Train Epoch 325: operator losses : 0.4378
Training batch: [#####################.............................] 326/750 mopt epoch_counter : 327
Train Epoch 326: operator losses : 0.3208
Training batch: [#####################.............................] 327/750 mopt epoch_counter : 328
Train Epoch 327: operator losses : 0.2487
Training batch: [#####################.............................] 328/750 mopt epoch_counter : 329
Train Epoch 328: operator losses : 0.1391
Training batch: [#####################.............................] 329/750 mopt epoch_counter : 330
Train Epoch 329: operator losses : 0.2383
Training batch: [######################............................] 330/750 mopt epoch_counter : 331
Train Epoch 330: operator losses : 0.5659
Training batch: [######################............................] 331/750 mopt epoch_counter : 332
Train Epoch 331: operator losses : 0.5718
Training batch: [######################............................] 332/750 mopt epoch_counter : 333
Train Epoch 332: operator losses : 0.3374
Training batch: [######################............................] 333/750 mopt epoch_counter : 334
Train Epoch 333: operator losses : 0.3380
Training batch: [######################............................] 334/750 mopt epoch_counter : 335
Train Epoch 334: operator losses : 0.2539
Training batch: [######################............................] 335/750 mopt epoch_counter : 336
Train Epoch 335: operator losses : 0.4928
Training batch: [######################............................] 336/750 mopt epoch_counter : 337
Train Epoch 336: operator losses : 0.4313
Training batch: [######################............................] 337/750 mopt epoch_counter : 338
Train Epoch 337: operator losses : 0.2099
Training batch: [######################............................] 338/750 mopt epoch_counter : 339
Train Epoch 338: operator losses : 0.5377
Training batch: [######################............................] 339/750 mopt epoch_counter : 340
Train Epoch 339: operator losses : 0.5353
Training batch: [######################............................] 340/750 mopt epoch_counter : 341
Train Epoch 340: operator losses : 0.4374
Training batch: [######################............................] 341/750 mopt epoch_counter : 342
Train Epoch 341: operator losses : 0.4297
Training batch: [######################............................] 342/750 mopt epoch_counter : 343
Train Epoch 342: operator losses : 0.1290
Training batch: [######################............................] 343/750 mopt epoch_counter : 344
Train Epoch 343: operator losses : 0.3127
Training batch: [######################............................] 344/750 mopt epoch_counter : 345
Train Epoch 344: operator losses : 0.6692
Training batch: [#######################...........................] 345/750 mopt epoch_counter : 346
Train Epoch 345: operator losses : 0.3499
Training batch: [#######################...........................] 346/750 mopt epoch_counter : 347
Train Epoch 346: operator losses : 0.2433
Training batch: [#######################...........................] 347/750 mopt epoch_counter : 348
Train Epoch 347: operator losses : 0.2760
Training batch: [#######################...........................] 348/750 mopt epoch_counter : 349
Train Epoch 348: operator losses : 0.5472
Training batch: [#######################...........................] 349/750 mopt epoch_counter : 350
Train Epoch 349: operator losses : 0.4136
Training batch: [#######################...........................] 350/750 mopt epoch_counter : 351
Train Epoch 350: operator losses : 0.1950
Training batch: [#######################...........................] 351/750 mopt epoch_counter : 352
Train Epoch 351: operator losses : 0.4856
Training batch: [#######################...........................] 352/750 mopt epoch_counter : 353
Train Epoch 352: operator losses : 0.4032
Training batch: [#######################...........................] 353/750 mopt epoch_counter : 354
Train Epoch 353: operator losses : 0.3221
Training batch: [#######################...........................] 354/750 mopt epoch_counter : 355
Train Epoch 354: operator losses : 0.4900
Training batch: [#######################...........................] 355/750 mopt epoch_counter : 356
Train Epoch 355: operator losses : 0.4956
Training batch: [#######################...........................] 356/750 mopt epoch_counter : 357
Train Epoch 356: operator losses : 0.3938
Training batch: [#######################...........................] 357/750 mopt epoch_counter : 358
Train Epoch 357: operator losses : 0.2311
Training batch: [#######################...........................] 358/750 mopt epoch_counter : 359
Train Epoch 358: operator losses : 0.4564
Training batch: [#######################...........................] 359/750 mopt epoch_counter : 360
Train Epoch 359: operator losses : 0.4862
Training batch: [########################..........................] 360/750 mopt epoch_counter : 361
Train Epoch 360: operator losses : 0.3320
Training batch: [########################..........................] 361/750 mopt epoch_counter : 362
Train Epoch 361: operator losses : 0.4258
Training batch: [########################..........................] 362/750 mopt epoch_counter : 363
Train Epoch 362: operator losses : 0.3929
Training batch: [########################..........................] 363/750 mopt epoch_counter : 364
Train Epoch 363: operator losses : 0.3189
Training batch: [########################..........................] 364/750 mopt epoch_counter : 365
Train Epoch 364: operator losses : 0.2492
Training batch: [########################..........................] 365/750 mopt epoch_counter : 366
Train Epoch 365: operator losses : 0.4524
Training batch: [########################..........................] 366/750 mopt epoch_counter : 367
Train Epoch 366: operator losses : 0.3954
Training batch: [########################..........................] 367/750 mopt epoch_counter : 368
Train Epoch 367: operator losses : 0.6977
Training batch: [########################..........................] 368/750 mopt epoch_counter : 369
Train Epoch 368: operator losses : 0.3421
Training batch: [########################..........................] 369/750 mopt epoch_counter : 370
Train Epoch 369: operator losses : 0.2833
Training batch: [########################..........................] 370/750 mopt epoch_counter : 371
Train Epoch 370: operator losses : 0.3777
Training batch: [########################..........................] 371/750 mopt epoch_counter : 372
Train Epoch 371: operator losses : 0.5312
Training batch: [########################..........................] 372/750 mopt epoch_counter : 373
Train Epoch 372: operator losses : 0.3481
Training batch: [########################..........................] 373/750 mopt epoch_counter : 374
Train Epoch 373: operator losses : 0.4133
Training batch: [########################..........................] 374/750 mopt epoch_counter : 375
Train Epoch 374: operator losses : 0.3048
Training batch: [#########################.........................] 375/750 mopt epoch_counter : 376
Train Epoch 375: operator losses : 0.5875
Training batch: [#########################.........................] 376/750 mopt epoch_counter : 377
Train Epoch 376: operator losses : 0.3607
Training batch: [#########################.........................] 377/750 mopt epoch_counter : 378
Train Epoch 377: operator losses : 0.4440
Training batch: [#########################.........................] 378/750 mopt epoch_counter : 379
Train Epoch 378: operator losses : 0.2001
Training batch: [#########################.........................] 379/750 mopt epoch_counter : 380
Train Epoch 379: operator losses : 0.4666
Training batch: [#########################.........................] 380/750 mopt epoch_counter : 381
Train Epoch 380: operator losses : 0.6643
Training batch: [#########################.........................] 381/750 mopt epoch_counter : 382
Train Epoch 381: operator losses : 0.4747
Training batch: [#########################.........................] 382/750 mopt epoch_counter : 383
Train Epoch 382: operator losses : 0.3785
Training batch: [#########################.........................] 383/750 mopt epoch_counter : 384
Train Epoch 383: operator losses : 0.4004
Training batch: [#########################.........................] 384/750 mopt epoch_counter : 385
Train Epoch 384: operator losses : 0.2942
Training batch: [#########################.........................] 385/750 mopt epoch_counter : 386
Train Epoch 385: operator losses : 0.4907
Training batch: [#########################.........................] 386/750 mopt epoch_counter : 387
Train Epoch 386: operator losses : 0.2838
Training batch: [#########################.........................] 387/750 mopt epoch_counter : 388
Train Epoch 387: operator losses : 0.3574
Training batch: [#########################.........................] 388/750 mopt epoch_counter : 389
Train Epoch 388: operator losses : 0.5985
Training batch: [#########################.........................] 389/750 mopt epoch_counter : 390
Train Epoch 389: operator losses : 0.2369
Training batch: [##########################........................] 390/750 mopt epoch_counter : 391
Train Epoch 390: operator losses : 0.3946
Training batch: [##########################........................] 391/750 mopt epoch_counter : 392
Train Epoch 391: operator losses : 0.4120
Training batch: [##########################........................] 392/750 mopt epoch_counter : 393
Train Epoch 392: operator losses : 0.3602
Training batch: [##########################........................] 393/750 mopt epoch_counter : 394
Train Epoch 393: operator losses : 0.5088
Training batch: [##########################........................] 394/750 mopt epoch_counter : 395
Train Epoch 394: operator losses : 0.4194
Training batch: [##########################........................] 395/750 mopt epoch_counter : 396
Train Epoch 395: operator losses : 0.4241
Training batch: [##########################........................] 396/750 mopt epoch_counter : 397
Train Epoch 396: operator losses : 0.2859
Training batch: [##########################........................] 397/750 mopt epoch_counter : 398
Train Epoch 397: operator losses : 0.3429
Training batch: [##########################........................] 398/750 mopt epoch_counter : 399
Train Epoch 398: operator losses : 0.3628
Training batch: [##########################........................] 399/750 mopt epoch_counter : 400
Train Epoch 399: operator losses : 0.3709
Training batch: [##########################........................] 400/750 mopt epoch_counter : 401
Train Epoch 400: operator losses : 0.3887
Training batch: [##########################........................] 401/750 mopt epoch_counter : 402
Train Epoch 401: operator losses : 0.2739
Training batch: [##########################........................] 402/750 mopt epoch_counter : 403
Train Epoch 402: operator losses : 0.2843
Training batch: [##########################........................] 403/750 mopt epoch_counter : 404
Train Epoch 403: operator losses : 0.3723
Training batch: [##########################........................] 404/750 mopt epoch_counter : 405
Train Epoch 404: operator losses : 0.5059
Training batch: [###########################.......................] 405/750 mopt epoch_counter : 406
Train Epoch 405: operator losses : 0.3344
Training batch: [###########################.......................] 406/750 mopt epoch_counter : 407
Train Epoch 406: operator losses : 0.3149
Training batch: [###########################.......................] 407/750 mopt epoch_counter : 408
Train Epoch 407: operator losses : 0.4161
Training batch: [###########################.......................] 408/750 mopt epoch_counter : 409
Train Epoch 408: operator losses : 0.2063
Training batch: [###########################.......................] 409/750 mopt epoch_counter : 410
Train Epoch 409: operator losses : 0.5367
Training batch: [###########################.......................] 410/750 mopt epoch_counter : 411
Train Epoch 410: operator losses : 0.4996
Training batch: [###########################.......................] 411/750 mopt epoch_counter : 412
Train Epoch 411: operator losses : 0.2301
Training batch: [###########################.......................] 412/750 mopt epoch_counter : 413
Train Epoch 412: operator losses : 0.3565
Training batch: [###########################.......................] 413/750 mopt epoch_counter : 414
Train Epoch 413: operator losses : 0.3866
Training batch: [###########################.......................] 414/750 mopt epoch_counter : 415
Train Epoch 414: operator losses : 0.1921
Training batch: [###########################.......................] 415/750 mopt epoch_counter : 416
Train Epoch 415: operator losses : 0.5556
Training batch: [###########################.......................] 416/750 mopt epoch_counter : 417
Train Epoch 416: operator losses : 0.3115
Training batch: [###########################.......................] 417/750 mopt epoch_counter : 418
Train Epoch 417: operator losses : 0.4190
Training batch: [###########################.......................] 418/750 mopt epoch_counter : 419
Train Epoch 418: operator losses : 0.4350
Training batch: [###########################.......................] 419/750 mopt epoch_counter : 420
Train Epoch 419: operator losses : 0.2217
Training batch: [############################......................] 420/750 mopt epoch_counter : 421
Train Epoch 420: operator losses : 0.2826
Training batch: [############################......................] 421/750 mopt epoch_counter : 422
Train Epoch 421: operator losses : 0.3106
Training batch: [############################......................] 422/750 mopt epoch_counter : 423
Train Epoch 422: operator losses : 0.5309
Training batch: [############################......................] 423/750 mopt epoch_counter : 424
Train Epoch 423: operator losses : 0.1784
Training batch: [############################......................] 424/750 mopt epoch_counter : 425
Train Epoch 424: operator losses : 0.3109
Training batch: [############################......................] 425/750 mopt epoch_counter : 426
Train Epoch 425: operator losses : 0.3647
Training batch: [############################......................] 426/750 mopt epoch_counter : 427
Train Epoch 426: operator losses : 0.2182
Training batch: [############################......................] 427/750 mopt epoch_counter : 428
Train Epoch 427: operator losses : 0.5358
Training batch: [############################......................] 428/750 mopt epoch_counter : 429
Train Epoch 428: operator losses : 0.3032
Training batch: [############################......................] 429/750 mopt epoch_counter : 430
Train Epoch 429: operator losses : 0.5002
Training batch: [############################......................] 430/750 mopt epoch_counter : 431
Train Epoch 430: operator losses : 0.3186
Training batch: [############################......................] 431/750 mopt epoch_counter : 432
Train Epoch 431: operator losses : 0.3934
Training batch: [############################......................] 432/750 mopt epoch_counter : 433
Train Epoch 432: operator losses : 0.2943
Training batch: [############################......................] 433/750 mopt epoch_counter : 434
Train Epoch 433: operator losses : 0.5447
Training batch: [############################......................] 434/750 mopt epoch_counter : 435
Train Epoch 434: operator losses : 0.4259
Training batch: [#############################.....................] 435/750 mopt epoch_counter : 436
Train Epoch 435: operator losses : 0.3845
Training batch: [#############################.....................] 436/750 mopt epoch_counter : 437
Train Epoch 436: operator losses : 0.3136
Training batch: [#############################.....................] 437/750 mopt epoch_counter : 438
Train Epoch 437: operator losses : 0.5656
Training batch: [#############################.....................] 438/750 mopt epoch_counter : 439
Train Epoch 438: operator losses : 0.3078
Training batch: [#############################.....................] 439/750 mopt epoch_counter : 440
Train Epoch 439: operator losses : 0.3268
Training batch: [#############################.....................] 440/750 mopt epoch_counter : 441
Train Epoch 440: operator losses : 0.2561
Training batch: [#############################.....................] 441/750 mopt epoch_counter : 442
Train Epoch 441: operator losses : 0.5922
Training batch: [#############################.....................] 442/750 mopt epoch_counter : 443
Train Epoch 442: operator losses : 0.3388
Training batch: [#############################.....................] 443/750 mopt epoch_counter : 444
Train Epoch 443: operator losses : 0.3870
Training batch: [#############################.....................] 444/750 mopt epoch_counter : 445
Train Epoch 444: operator losses : 0.3423
Training batch: [#############################.....................] 445/750 mopt epoch_counter : 446
Train Epoch 445: operator losses : 0.4277
Training batch: [#############################.....................] 446/750 mopt epoch_counter : 447
Train Epoch 446: operator losses : 0.4748
Training batch: [#############################.....................] 447/750 mopt epoch_counter : 448
Train Epoch 447: operator losses : 0.4098
Training batch: [#############################.....................] 448/750 mopt epoch_counter : 449
Train Epoch 448: operator losses : 0.2273
Training batch: [#############################.....................] 449/750 mopt epoch_counter : 450
Train Epoch 449: operator losses : 0.4709
Training batch: [##############################....................] 450/750 mopt epoch_counter : 451
Train Epoch 450: operator losses : 0.3258
Training batch: [##############################....................] 451/750 mopt epoch_counter : 452
Train Epoch 451: operator losses : 0.2773
Training batch: [##############################....................] 452/750 mopt epoch_counter : 453
Train Epoch 452: operator losses : 0.2200
Training batch: [##############################....................] 453/750 mopt epoch_counter : 454
Train Epoch 453: operator losses : 0.5844
Training batch: [##############################....................] 454/750 mopt epoch_counter : 455
Train Epoch 454: operator losses : 0.1910
Training batch: [##############################....................] 455/750 mopt epoch_counter : 456
Train Epoch 455: operator losses : 0.1406
Training batch: [##############################....................] 456/750 mopt epoch_counter : 457
Train Epoch 456: operator losses : 0.3230
Training batch: [##############################....................] 457/750 mopt epoch_counter : 458
Train Epoch 457: operator losses : 0.5148
Training batch: [##############################....................] 458/750 mopt epoch_counter : 459
Train Epoch 458: operator losses : 0.3418
Training batch: [##############################....................] 459/750 mopt epoch_counter : 460
Train Epoch 459: operator losses : 0.1581
Training batch: [##############################....................] 460/750 mopt epoch_counter : 461
Train Epoch 460: operator losses : 0.4197
Training batch: [##############################....................] 461/750 mopt epoch_counter : 462
Train Epoch 461: operator losses : 0.2602
Training batch: [##############################....................] 462/750 mopt epoch_counter : 463
Train Epoch 462: operator losses : 0.4834
Training batch: [##############################....................] 463/750 mopt epoch_counter : 464
Train Epoch 463: operator losses : 0.3136
Training batch: [##############################....................] 464/750 mopt epoch_counter : 465
Train Epoch 464: operator losses : 0.4395
Training batch: [###############################...................] 465/750 mopt epoch_counter : 466
Train Epoch 465: operator losses : 0.4890
Training batch: [###############################...................] 466/750 mopt epoch_counter : 467
Train Epoch 466: operator losses : 0.3752
Training batch: [###############################...................] 467/750 mopt epoch_counter : 468
Train Epoch 467: operator losses : 0.2836
Training batch: [###############################...................] 468/750 mopt epoch_counter : 469
Train Epoch 468: operator losses : 0.6124
Training batch: [###############################...................] 469/750 mopt epoch_counter : 470
Train Epoch 469: operator losses : 0.5251
Training batch: [###############################...................] 470/750 mopt epoch_counter : 471
Train Epoch 470: operator losses : 0.6941
Training batch: [###############################...................] 471/750 mopt epoch_counter : 472
Train Epoch 471: operator losses : 0.4332
Training batch: [###############################...................] 472/750 mopt epoch_counter : 473
Train Epoch 472: operator losses : 0.3380
Training batch: [###############################...................] 473/750 mopt epoch_counter : 474
Train Epoch 473: operator losses : 0.2237
Training batch: [###############################...................] 474/750 mopt epoch_counter : 475
Train Epoch 474: operator losses : 0.3794
Training batch: [###############################...................] 475/750 mopt epoch_counter : 476
Train Epoch 475: operator losses : 0.3231
Training batch: [###############################...................] 476/750 mopt epoch_counter : 477
Train Epoch 476: operator losses : 0.3708
Training batch: [###############################...................] 477/750 mopt epoch_counter : 478
Train Epoch 477: operator losses : 0.3019
Training batch: [###############################...................] 478/750 mopt epoch_counter : 479
Train Epoch 478: operator losses : 0.5235
Training batch: [###############################...................] 479/750 mopt epoch_counter : 480
Train Epoch 479: operator losses : 0.3529
Training batch: [################################..................] 480/750 mopt epoch_counter : 481
Train Epoch 480: operator losses : 0.5282
Training batch: [################################..................] 481/750 mopt epoch_counter : 482
Train Epoch 481: operator losses : 0.5045
Training batch: [################################..................] 482/750 mopt epoch_counter : 483
Train Epoch 482: operator losses : 0.3225
Training batch: [################################..................] 483/750 mopt epoch_counter : 484
Train Epoch 483: operator losses : 0.4968
Training batch: [################################..................] 484/750 mopt epoch_counter : 485
Train Epoch 484: operator losses : 0.3224
Training batch: [################################..................] 485/750 mopt epoch_counter : 486
Train Epoch 485: operator losses : 0.5707
Training batch: [################################..................] 486/750 mopt epoch_counter : 487
Train Epoch 486: operator losses : 0.3872
Training batch: [################################..................] 487/750 mopt epoch_counter : 488
Train Epoch 487: operator losses : 0.3894
Training batch: [################################..................] 488/750 mopt epoch_counter : 489
Train Epoch 488: operator losses : 0.2625
Training batch: [################################..................] 489/750 mopt epoch_counter : 490
Train Epoch 489: operator losses : 0.6318
Training batch: [################################..................] 490/750 mopt epoch_counter : 491
Train Epoch 490: operator losses : 0.1838
Training batch: [################################..................] 491/750 mopt epoch_counter : 492
Train Epoch 491: operator losses : 0.4771
Training batch: [################################..................] 492/750 mopt epoch_counter : 493
Train Epoch 492: operator losses : 0.4945
Training batch: [################################..................] 493/750 mopt epoch_counter : 494
Train Epoch 493: operator losses : 0.4246
Training batch: [################################..................] 494/750 mopt epoch_counter : 495
Train Epoch 494: operator losses : 0.3461
Training batch: [#################################.................] 495/750 mopt epoch_counter : 496
Train Epoch 495: operator losses : 0.4493
Training batch: [#################################.................] 496/750 mopt epoch_counter : 497
Train Epoch 496: operator losses : 0.4302
Training batch: [#################################.................] 497/750 mopt epoch_counter : 498
Train Epoch 497: operator losses : 0.5304
Training batch: [#################################.................] 498/750 mopt epoch_counter : 499
Train Epoch 498: operator losses : 0.3919
Training batch: [#################################.................] 499/750 mopt epoch_counter : 500
Train Epoch 499: operator losses : 0.4729
Training batch: [#################################.................] 500/750 mopt epoch_counter : 501
Train Epoch 500: operator losses : 0.3166
Training batch: [#################################.................] 501/750 mopt epoch_counter : 502
Train Epoch 501: operator losses : 0.1712
Training batch: [#################################.................] 502/750 mopt epoch_counter : 503
Train Epoch 502: operator losses : 0.4583
Training batch: [#################################.................] 503/750 mopt epoch_counter : 504
Train Epoch 503: operator losses : 0.2791
Training batch: [#################################.................] 504/750 mopt epoch_counter : 505
Train Epoch 504: operator losses : 0.1580
Training batch: [#################################.................] 505/750 mopt epoch_counter : 506
Train Epoch 505: operator losses : 0.6236
Training batch: [#################################.................] 506/750 mopt epoch_counter : 507
Train Epoch 506: operator losses : 0.2655
Training batch: [#################################.................] 507/750 mopt epoch_counter : 508
Train Epoch 507: operator losses : 0.4481
Training batch: [#################################.................] 508/750 mopt epoch_counter : 509
Train Epoch 508: operator losses : 0.1782
Training batch: [#################################.................] 509/750 mopt epoch_counter : 510
Train Epoch 509: operator losses : 0.4503
Training batch: [##################################................] 510/750 mopt epoch_counter : 511
Train Epoch 510: operator losses : 0.6553
Training batch: [##################################................] 511/750 mopt epoch_counter : 512
Train Epoch 511: operator losses : 0.2414
Training batch: [##################################................] 512/750 mopt epoch_counter : 513
Train Epoch 512: operator losses : 0.3703
Training batch: [##################################................] 513/750 mopt epoch_counter : 514
Train Epoch 513: operator losses : 0.2429
Training batch: [##################################................] 514/750 mopt epoch_counter : 515
Train Epoch 514: operator losses : 0.2980
Training batch: [##################################................] 515/750 mopt epoch_counter : 516
Train Epoch 515: operator losses : 0.4393
Training batch: [##################################................] 516/750 mopt epoch_counter : 517
Train Epoch 516: operator losses : 0.1813
Training batch: [##################################................] 517/750 mopt epoch_counter : 518
Train Epoch 517: operator losses : 0.4380
Training batch: [##################################................] 518/750 mopt epoch_counter : 519
Train Epoch 518: operator losses : 0.4996
Training batch: [##################################................] 519/750 mopt epoch_counter : 520
Train Epoch 519: operator losses : 0.2634
Training batch: [##################################................] 520/750 mopt epoch_counter : 521
Train Epoch 520: operator losses : 0.2282
Training batch: [##################################................] 521/750 mopt epoch_counter : 522
Train Epoch 521: operator losses : 0.4138
Training batch: [##################################................] 522/750 mopt epoch_counter : 523
Train Epoch 522: operator losses : 0.4638
Training batch: [##################################................] 523/750 mopt epoch_counter : 524
Train Epoch 523: operator losses : 0.1987
Training batch: [##################################................] 524/750 mopt epoch_counter : 525
Train Epoch 524: operator losses : 0.6221
Training batch: [###################################...............] 525/750 mopt epoch_counter : 526
Train Epoch 525: operator losses : 0.4705
Training batch: [###################################...............] 526/750 mopt epoch_counter : 527
Train Epoch 526: operator losses : 0.4818
Training batch: [###################################...............] 527/750 mopt epoch_counter : 528
Train Epoch 527: operator losses : 0.5348
Training batch: [###################################...............] 528/750 mopt epoch_counter : 529
Train Epoch 528: operator losses : 0.4376
Training batch: [###################################...............] 529/750 mopt epoch_counter : 530
Train Epoch 529: operator losses : 0.5030
Training batch: [###################################...............] 530/750 mopt epoch_counter : 531
Train Epoch 530: operator losses : 0.3746
Training batch: [###################################...............] 531/750 mopt epoch_counter : 532
Train Epoch 531: operator losses : 0.3795
Training batch: [###################################...............] 532/750 mopt epoch_counter : 533
Train Epoch 532: operator losses : 0.1958
Training batch: [###################################...............] 533/750 mopt epoch_counter : 534
Train Epoch 533: operator losses : 0.2851
Training batch: [###################################...............] 534/750 mopt epoch_counter : 535
Train Epoch 534: operator losses : 0.2074
Training batch: [###################################...............] 535/750 mopt epoch_counter : 536
Train Epoch 535: operator losses : 0.3400
Training batch: [###################################...............] 536/750 mopt epoch_counter : 537
Train Epoch 536: operator losses : 0.3732
Training batch: [###################################...............] 537/750 mopt epoch_counter : 538
Train Epoch 537: operator losses : 0.6502
Training batch: [###################################...............] 538/750 mopt epoch_counter : 539
Train Epoch 538: operator losses : 0.4010
Training batch: [###################################...............] 539/750 mopt epoch_counter : 540
Train Epoch 539: operator losses : 0.3837
Training batch: [####################################..............] 540/750 mopt epoch_counter : 541
Train Epoch 540: operator losses : 0.4005
Training batch: [####################################..............] 541/750 mopt epoch_counter : 542
Train Epoch 541: operator losses : 0.2255
Training batch: [####################################..............] 542/750 mopt epoch_counter : 543
Train Epoch 542: operator losses : 0.3795
Training batch: [####################################..............] 543/750 mopt epoch_counter : 544
Train Epoch 543: operator losses : 0.4847
Training batch: [####################################..............] 544/750 mopt epoch_counter : 545
Train Epoch 544: operator losses : 0.2987
Training batch: [####################################..............] 545/750 mopt epoch_counter : 546
Train Epoch 545: operator losses : 0.2166
Training batch: [####################################..............] 546/750 mopt epoch_counter : 547
Train Epoch 546: operator losses : 0.3292
Training batch: [####################################..............] 547/750 mopt epoch_counter : 548
Train Epoch 547: operator losses : 0.4537
Training batch: [####################################..............] 548/750 mopt epoch_counter : 549
Train Epoch 548: operator losses : 0.4733
Training batch: [####################################..............] 549/750 mopt epoch_counter : 550
Train Epoch 549: operator losses : 0.4431
Training batch: [####################################..............] 550/750 mopt epoch_counter : 551
Train Epoch 550: operator losses : 0.3272
Training batch: [####################################..............] 551/750 mopt epoch_counter : 552
Train Epoch 551: operator losses : 0.4484
Training batch: [####################################..............] 552/750 mopt epoch_counter : 553
Train Epoch 552: operator losses : 0.1714
Training batch: [####################################..............] 553/750 mopt epoch_counter : 554
Train Epoch 553: operator losses : 0.3743
Training batch: [####################################..............] 554/750 mopt epoch_counter : 555
Train Epoch 554: operator losses : 0.4797
Training batch: [#####################################.............] 555/750 mopt epoch_counter : 556
Train Epoch 555: operator losses : 0.1619
Training batch: [#####################################.............] 556/750 mopt epoch_counter : 557
Train Epoch 556: operator losses : 0.2496
Training batch: [#####################################.............] 557/750 mopt epoch_counter : 558
Train Epoch 557: operator losses : 0.3170
Training batch: [#####################################.............] 558/750 mopt epoch_counter : 559
Train Epoch 558: operator losses : 0.1960
Training batch: [#####################################.............] 559/750 mopt epoch_counter : 560
Train Epoch 559: operator losses : 0.3835
Training batch: [#####################################.............] 560/750 mopt epoch_counter : 561
Train Epoch 560: operator losses : 0.3549
Training batch: [#####################################.............] 561/750 mopt epoch_counter : 562
Train Epoch 561: operator losses : 0.2408
Training batch: [#####################################.............] 562/750 mopt epoch_counter : 563
Train Epoch 562: operator losses : 0.4759
Training batch: [#####################################.............] 563/750 mopt epoch_counter : 564
Train Epoch 563: operator losses : 0.3320
Training batch: [#####################################.............] 564/750 mopt epoch_counter : 565
Train Epoch 564: operator losses : 0.1384
Training batch: [#####################################.............] 565/750 mopt epoch_counter : 566
Train Epoch 565: operator losses : 0.4259
Training batch: [#####################################.............] 566/750 mopt epoch_counter : 567
Train Epoch 566: operator losses : 0.2758
Training batch: [#####################################.............] 567/750 mopt epoch_counter : 568
Train Epoch 567: operator losses : 0.2647
Training batch: [#####################################.............] 568/750 mopt epoch_counter : 569
Train Epoch 568: operator losses : 0.3683
Training batch: [#####################################.............] 569/750 mopt epoch_counter : 570
Train Epoch 569: operator losses : 0.3221
Training batch: [######################################............] 570/750 mopt epoch_counter : 571
Train Epoch 570: operator losses : 0.5292
Training batch: [######################################............] 571/750 mopt epoch_counter : 572
Train Epoch 571: operator losses : 0.3633
Training batch: [######################################............] 572/750 mopt epoch_counter : 573
Train Epoch 572: operator losses : 0.2334
Training batch: [######################################............] 573/750 mopt epoch_counter : 574
Train Epoch 573: operator losses : 0.4417
Training batch: [######################################............] 574/750 mopt epoch_counter : 575
Train Epoch 574: operator losses : 0.4274
Training batch: [######################################............] 575/750 mopt epoch_counter : 576
Train Epoch 575: operator losses : 0.3155
Training batch: [######################################............] 576/750 mopt epoch_counter : 577
Train Epoch 576: operator losses : 0.2048
Training batch: [######################################............] 577/750 mopt epoch_counter : 578
Train Epoch 577: operator losses : 0.4526
Training batch: [######################################............] 578/750 mopt epoch_counter : 579
Train Epoch 578: operator losses : 0.2927
Training batch: [######################################............] 579/750 mopt epoch_counter : 580
Train Epoch 579: operator losses : 0.1738
Training batch: [######################################............] 580/750 mopt epoch_counter : 581
Train Epoch 580: operator losses : 0.9051
Training batch: [######################################............] 581/750 mopt epoch_counter : 582
Train Epoch 581: operator losses : 0.3776
Training batch: [######################################............] 582/750 mopt epoch_counter : 583
Train Epoch 582: operator losses : 0.3190
Training batch: [######################################............] 583/750 mopt epoch_counter : 584
Train Epoch 583: operator losses : 0.3949
Training batch: [######################################............] 584/750 mopt epoch_counter : 585
Train Epoch 584: operator losses : 0.4461
Training batch: [#######################################...........] 585/750 mopt epoch_counter : 586
Train Epoch 585: operator losses : 0.3221
Training batch: [#######################################...........] 586/750 mopt epoch_counter : 587
Train Epoch 586: operator losses : 0.4659
Training batch: [#######################################...........] 587/750 mopt epoch_counter : 588
Train Epoch 587: operator losses : 0.3161
Training batch: [#######################################...........] 588/750 mopt epoch_counter : 589
Train Epoch 588: operator losses : 0.3758
Training batch: [#######################################...........] 589/750 mopt epoch_counter : 590
Train Epoch 589: operator losses : 0.3791
Training batch: [#######################################...........] 590/750 mopt epoch_counter : 591
Train Epoch 590: operator losses : 0.2237
Training batch: [#######################################...........] 591/750 mopt epoch_counter : 592
Train Epoch 591: operator losses : 0.1152
Training batch: [#######################################...........] 592/750 mopt epoch_counter : 593
Train Epoch 592: operator losses : 0.3155
Training batch: [#######################################...........] 593/750 mopt epoch_counter : 594
Train Epoch 593: operator losses : 0.3979
Training batch: [#######################################...........] 594/750 mopt epoch_counter : 595
Train Epoch 594: operator losses : 0.3212
Training batch: [#######################################...........] 595/750 mopt epoch_counter : 596
Train Epoch 595: operator losses : 0.6500
Training batch: [#######################################...........] 596/750 mopt epoch_counter : 597
Train Epoch 596: operator losses : 0.3081
Training batch: [#######################################...........] 597/750 mopt epoch_counter : 598
Train Epoch 597: operator losses : 0.3484
Training batch: [#######################################...........] 598/750 mopt epoch_counter : 599
Train Epoch 598: operator losses : 0.3235
Training batch: [#######################################...........] 599/750 mopt epoch_counter : 600
Train Epoch 599: operator losses : 0.4706
Training batch: [########################################..........] 600/750 mopt epoch_counter : 601
Train Epoch 600: operator losses : 0.2508
Training batch: [########################################..........] 601/750 mopt epoch_counter : 602
Train Epoch 601: operator losses : 0.3220
Training batch: [########################################..........] 602/750 mopt epoch_counter : 603
Train Epoch 602: operator losses : 0.3298
Training batch: [########################################..........] 603/750 mopt epoch_counter : 604
Train Epoch 603: operator losses : 0.1379
Training batch: [########################################..........] 604/750 mopt epoch_counter : 605
Train Epoch 604: operator losses : 0.4362
Training batch: [########################################..........] 605/750 mopt epoch_counter : 606
Train Epoch 605: operator losses : 0.2865
Training batch: [########################################..........] 606/750 mopt epoch_counter : 607
Train Epoch 606: operator losses : 0.2953
Training batch: [########################################..........] 607/750 mopt epoch_counter : 608
Train Epoch 607: operator losses : 0.3743
Training batch: [########################################..........] 608/750 mopt epoch_counter : 609
Train Epoch 608: operator losses : 0.4262
Training batch: [########################################..........] 609/750 mopt epoch_counter : 610
Train Epoch 609: operator losses : 0.4865
Training batch: [########################################..........] 610/750 mopt epoch_counter : 611
Train Epoch 610: operator losses : 0.1999
Training batch: [########################################..........] 611/750 mopt epoch_counter : 612
Train Epoch 611: operator losses : 0.3330
Training batch: [########################################..........] 612/750 mopt epoch_counter : 613
Train Epoch 612: operator losses : 0.3579
Training batch: [########################################..........] 613/750 mopt epoch_counter : 614
Train Epoch 613: operator losses : 0.2815
Training batch: [########################################..........] 614/750 mopt epoch_counter : 615
Train Epoch 614: operator losses : 0.5975
Training batch: [#########################################.........] 615/750 mopt epoch_counter : 616
Train Epoch 615: operator losses : 0.3628
Training batch: [#########################################.........] 616/750 mopt epoch_counter : 617
Train Epoch 616: operator losses : 0.3069
Training batch: [#########################################.........] 617/750 mopt epoch_counter : 618
Train Epoch 617: operator losses : 0.1908
Training batch: [#########################################.........] 618/750 mopt epoch_counter : 619
Train Epoch 618: operator losses : 0.4000
Training batch: [#########################################.........] 619/750 mopt epoch_counter : 620
Train Epoch 619: operator losses : 0.2912
Training batch: [#########################################.........] 620/750 mopt epoch_counter : 621
Train Epoch 620: operator losses : 0.3974
Training batch: [#########################################.........] 621/750 mopt epoch_counter : 622
Train Epoch 621: operator losses : 0.4709
Training batch: [#########################################.........] 622/750 mopt epoch_counter : 623
Train Epoch 622: operator losses : 0.4089
Training batch: [#########################################.........] 623/750 mopt epoch_counter : 624
Train Epoch 623: operator losses : 0.2573
Training batch: [#########################################.........] 624/750 mopt epoch_counter : 625
Train Epoch 624: operator losses : 0.4314
Training batch: [#########################################.........] 625/750 mopt epoch_counter : 626
Train Epoch 625: operator losses : 0.5806
Training batch: [#########################################.........] 626/750 mopt epoch_counter : 627
Train Epoch 626: operator losses : 0.4671
Training batch: [#########################################.........] 627/750 mopt epoch_counter : 628
Train Epoch 627: operator losses : 0.3322
Training batch: [#########################################.........] 628/750 mopt epoch_counter : 629
Train Epoch 628: operator losses : 0.2768
Training batch: [#########################################.........] 629/750 mopt epoch_counter : 630
Train Epoch 629: operator losses : 0.5061
Training batch: [##########################################........] 630/750 mopt epoch_counter : 631
Train Epoch 630: operator losses : 0.5693
Training batch: [##########################################........] 631/750 mopt epoch_counter : 632
Train Epoch 631: operator losses : 0.3190
Training batch: [##########################################........] 632/750 mopt epoch_counter : 633
Train Epoch 632: operator losses : 0.4887
Training batch: [##########################################........] 633/750 mopt epoch_counter : 634
Train Epoch 633: operator losses : 0.3029
Training batch: [##########################################........] 634/750 mopt epoch_counter : 635
Train Epoch 634: operator losses : 0.4508
Training batch: [##########################################........] 635/750 mopt epoch_counter : 636
Train Epoch 635: operator losses : 0.5573
Training batch: [##########################################........] 636/750 mopt epoch_counter : 637
Train Epoch 636: operator losses : 0.5404
Training batch: [##########################################........] 637/750 mopt epoch_counter : 638
Train Epoch 637: operator losses : 0.5474
Training batch: [##########################################........] 638/750 mopt epoch_counter : 639
Train Epoch 638: operator losses : 0.5803
Training batch: [##########################################........] 639/750 mopt epoch_counter : 640
Train Epoch 639: operator losses : 0.4477
Training batch: [##########################################........] 640/750 mopt epoch_counter : 641
Train Epoch 640: operator losses : 0.3718
Training batch: [##########################################........] 641/750 mopt epoch_counter : 642
Train Epoch 641: operator losses : 0.2502
Training batch: [##########################################........] 642/750 mopt epoch_counter : 643
Train Epoch 642: operator losses : 0.5551
Training batch: [##########################################........] 643/750 mopt epoch_counter : 644
Train Epoch 643: operator losses : 0.2891
Training batch: [##########################################........] 644/750 mopt epoch_counter : 645
Train Epoch 644: operator losses : 0.3610
Training batch: [###########################################.......] 645/750 mopt epoch_counter : 646
Train Epoch 645: operator losses : 0.4202
Training batch: [###########################################.......] 646/750 mopt epoch_counter : 647
Train Epoch 646: operator losses : 0.4089
Training batch: [###########################################.......] 647/750 mopt epoch_counter : 648
Train Epoch 647: operator losses : 0.2773
Training batch: [###########################################.......] 648/750 mopt epoch_counter : 649
Train Epoch 648: operator losses : 0.7258
Training batch: [###########################################.......] 649/750 mopt epoch_counter : 650
Train Epoch 649: operator losses : 0.3707
Training batch: [###########################################.......] 650/750 mopt epoch_counter : 651
Train Epoch 650: operator losses : 0.5089
Training batch: [###########################################.......] 651/750 mopt epoch_counter : 652
Train Epoch 651: operator losses : 0.4510
Training batch: [###########################################.......] 652/750 mopt epoch_counter : 653
Train Epoch 652: operator losses : 0.3132
Training batch: [###########################################.......] 653/750 mopt epoch_counter : 654
Train Epoch 653: operator losses : 0.4402
Training batch: [###########################################.......] 654/750 mopt epoch_counter : 655
Train Epoch 654: operator losses : 0.3359
Training batch: [###########################################.......] 655/750 mopt epoch_counter : 656
Train Epoch 655: operator losses : 0.5650
Training batch: [###########################################.......] 656/750 mopt epoch_counter : 657
Train Epoch 656: operator losses : 0.3791
Training batch: [###########################################.......] 657/750 mopt epoch_counter : 658
Train Epoch 657: operator losses : 0.5091
Training batch: [###########################################.......] 658/750 mopt epoch_counter : 659
Train Epoch 658: operator losses : 0.5202
Training batch: [###########################################.......] 659/750 mopt epoch_counter : 660
Train Epoch 659: operator losses : 0.3044
Training batch: [############################################......] 660/750 mopt epoch_counter : 661
Train Epoch 660: operator losses : 0.3779
Training batch: [############################################......] 661/750 mopt epoch_counter : 662
Train Epoch 661: operator losses : 0.3601
Training batch: [############################################......] 662/750 mopt epoch_counter : 663
Train Epoch 662: operator losses : 0.3634
Training batch: [############################################......] 663/750 mopt epoch_counter : 664
Train Epoch 663: operator losses : 0.5654
Training batch: [############################################......] 664/750 mopt epoch_counter : 665
Train Epoch 664: operator losses : 0.6536
Training batch: [############################################......] 665/750 mopt epoch_counter : 666
Train Epoch 665: operator losses : 0.3721
Training batch: [############################################......] 666/750 mopt epoch_counter : 667
Train Epoch 666: operator losses : 0.3891
Training batch: [############################################......] 667/750 mopt epoch_counter : 668
Train Epoch 667: operator losses : 0.3784
Training batch: [############################################......] 668/750 mopt epoch_counter : 669
Train Epoch 668: operator losses : 0.3352
Training batch: [############################################......] 669/750 mopt epoch_counter : 670
Train Epoch 669: operator losses : 0.5498
Training batch: [############################################......] 670/750 mopt epoch_counter : 671
Train Epoch 670: operator losses : 0.4399
Training batch: [############################################......] 671/750 mopt epoch_counter : 672
Train Epoch 671: operator losses : 0.4318
Training batch: [############################################......] 672/750 mopt epoch_counter : 673
Train Epoch 672: operator losses : 0.5225
Training batch: [############################################......] 673/750 mopt epoch_counter : 674
Train Epoch 673: operator losses : 0.3012
Training batch: [############################################......] 674/750 mopt epoch_counter : 675
Train Epoch 674: operator losses : 0.2189
Training batch: [#############################################.....] 675/750 mopt epoch_counter : 676
Train Epoch 675: operator losses : 0.4009
Training batch: [#############################################.....] 676/750 mopt epoch_counter : 677
Train Epoch 676: operator losses : 0.2069
Training batch: [#############################################.....] 677/750 mopt epoch_counter : 678
Train Epoch 677: operator losses : 0.2632
Training batch: [#############################################.....] 678/750 mopt epoch_counter : 679
Train Epoch 678: operator losses : 0.1979
Training batch: [#############################################.....] 679/750 mopt epoch_counter : 680
Train Epoch 679: operator losses : 0.2890
Training batch: [#############################################.....] 680/750 mopt epoch_counter : 681
Train Epoch 680: operator losses : 0.3168
Training batch: [#############################################.....] 681/750 mopt epoch_counter : 682
Train Epoch 681: operator losses : 0.3549
Training batch: [#############################################.....] 682/750 mopt epoch_counter : 683
Train Epoch 682: operator losses : 0.5867
Training batch: [#############################################.....] 683/750 mopt epoch_counter : 684
Train Epoch 683: operator losses : 0.5069
Training batch: [#############################################.....] 684/750 mopt epoch_counter : 685
Train Epoch 684: operator losses : 0.4701
Training batch: [#############################################.....] 685/750 mopt epoch_counter : 686
Train Epoch 685: operator losses : 0.3843
Training batch: [#############################################.....] 686/750 mopt epoch_counter : 687
Train Epoch 686: operator losses : 0.3529
Training batch: [#############################################.....] 687/750 mopt epoch_counter : 688
Train Epoch 687: operator losses : 0.3107
Training batch: [#############################################.....] 688/750 mopt epoch_counter : 689
Train Epoch 688: operator losses : 0.2810
Training batch: [#############################################.....] 689/750 mopt epoch_counter : 690
Train Epoch 689: operator losses : 0.1984
Training batch: [##############################################....] 690/750 mopt epoch_counter : 691
Train Epoch 690: operator losses : 0.4345
Training batch: [##############################################....] 691/750 mopt epoch_counter : 692
Train Epoch 691: operator losses : 0.2486
Training batch: [##############################################....] 692/750 mopt epoch_counter : 693
Train Epoch 692: operator losses : 0.3306
Training batch: [##############################################....] 693/750 mopt epoch_counter : 694
Train Epoch 693: operator losses : 0.2765
Training batch: [##############################################....] 694/750 mopt epoch_counter : 695
Train Epoch 694: operator losses : 0.3727
Training batch: [##############################################....] 695/750 mopt epoch_counter : 696
Train Epoch 695: operator losses : 0.4105
Training batch: [##############################################....] 696/750 mopt epoch_counter : 697
Train Epoch 696: operator losses : 0.6961
Training batch: [##############################################....] 697/750 mopt epoch_counter : 698
Train Epoch 697: operator losses : 0.5510
Training batch: [##############################################....] 698/750 mopt epoch_counter : 699
Train Epoch 698: operator losses : 0.2441
Training batch: [##############################################....] 699/750 mopt epoch_counter : 700
Train Epoch 699: operator losses : 0.2386
Training batch: [##############################################....] 700/750 mopt epoch_counter : 701
Train Epoch 700: operator losses : 0.3396
Training batch: [##############################################....] 701/750 mopt epoch_counter : 702
Train Epoch 701: operator losses : 0.3914
Training batch: [##############################################....] 702/750 mopt epoch_counter : 703
Train Epoch 702: operator losses : 0.2788
Training batch: [##############################################....] 703/750 mopt epoch_counter : 704
Train Epoch 703: operator losses : 0.4890
Training batch: [##############################################....] 704/750 mopt epoch_counter : 705
Train Epoch 704: operator losses : 0.3121
Training batch: [###############################################...] 705/750 mopt epoch_counter : 706
Train Epoch 705: operator losses : 0.5547
Training batch: [###############################################...] 706/750 mopt epoch_counter : 707
Train Epoch 706: operator losses : 0.2601
Training batch: [###############################################...] 707/750 mopt epoch_counter : 708
Train Epoch 707: operator losses : 0.3357
Training batch: [###############################################...] 708/750 mopt epoch_counter : 709
Train Epoch 708: operator losses : 0.3317
Training batch: [###############################################...] 709/750 mopt epoch_counter : 710
Train Epoch 709: operator losses : 0.3448
Training batch: [###############################################...] 710/750 mopt epoch_counter : 711
Train Epoch 710: operator losses : 0.4926
Training batch: [###############################################...] 711/750 mopt epoch_counter : 712
Train Epoch 711: operator losses : 0.6293
Training batch: [###############################################...] 712/750 mopt epoch_counter : 713
Train Epoch 712: operator losses : 0.3925
Training batch: [###############################################...] 713/750 mopt epoch_counter : 714
Train Epoch 713: operator losses : 0.3443
Training batch: [###############################################...] 714/750 mopt epoch_counter : 715
Train Epoch 714: operator losses : 0.2785
Training batch: [###############################################...] 715/750 mopt epoch_counter : 716
Train Epoch 715: operator losses : 0.5270
Training batch: [###############################################...] 716/750 mopt epoch_counter : 717
Train Epoch 716: operator losses : 0.5011
Training batch: [###############################################...] 717/750 mopt epoch_counter : 718
Train Epoch 717: operator losses : 0.2912
Training batch: [###############################################...] 718/750 mopt epoch_counter : 719
Train Epoch 718: operator losses : 0.3922
Training batch: [###############################################...] 719/750 mopt epoch_counter : 720
Train Epoch 719: operator losses : 0.2304
Training batch: [################################################..] 720/750 mopt epoch_counter : 721
Train Epoch 720: operator losses : 0.6464
Training batch: [################################################..] 721/750 mopt epoch_counter : 722
Train Epoch 721: operator losses : 0.3836
Training batch: [################################################..] 722/750 mopt epoch_counter : 723
Train Epoch 722: operator losses : 0.3686
Training batch: [################################################..] 723/750 mopt epoch_counter : 724
Train Epoch 723: operator losses : 0.4687
Training batch: [################################################..] 724/750 mopt epoch_counter : 725
Train Epoch 724: operator losses : 0.5951
Training batch: [################################################..] 725/750 mopt epoch_counter : 726
Train Epoch 725: operator losses : 0.3533
Training batch: [################################################..] 726/750 mopt epoch_counter : 727
Train Epoch 726: operator losses : 0.3568
Training batch: [################################################..] 727/750 mopt epoch_counter : 728
Train Epoch 727: operator losses : 0.3407
Training batch: [################################################..] 728/750 mopt epoch_counter : 729
Train Epoch 728: operator losses : 0.4656
Training batch: [################################################..] 729/750 mopt epoch_counter : 730
Train Epoch 729: operator losses : 0.3928
Training batch: [################################################..] 730/750 mopt epoch_counter : 731
Train Epoch 730: operator losses : 0.3239
Training batch: [################################################..] 731/750 mopt epoch_counter : 732
Train Epoch 731: operator losses : 0.3773
Training batch: [################################################..] 732/750 mopt epoch_counter : 733
Train Epoch 732: operator losses : 0.3971
Training batch: [################################################..] 733/750 mopt epoch_counter : 734
Train Epoch 733: operator losses : 0.5605
Training batch: [################################################..] 734/750 mopt epoch_counter : 735
Train Epoch 734: operator losses : 0.5520
Training batch: [#################################################.] 735/750 mopt epoch_counter : 736
Train Epoch 735: operator losses : 0.4912
Training batch: [#################################################.] 736/750 mopt epoch_counter : 737
Train Epoch 736: operator losses : 0.3181
Training batch: [#################################################.] 737/750 mopt epoch_counter : 738
Train Epoch 737: operator losses : 0.6711
Training batch: [#################################################.] 738/750 mopt epoch_counter : 739
Train Epoch 738: operator losses : 0.4034
Training batch: [#################################################.] 739/750 mopt epoch_counter : 740
Train Epoch 739: operator losses : 0.4188
Training batch: [#################################################.] 740/750 mopt epoch_counter : 741
Train Epoch 740: operator losses : 0.2891
Training batch: [#################################################.] 741/750 mopt epoch_counter : 742
Train Epoch 741: operator losses : 0.3329
Training batch: [#################################################.] 742/750 mopt epoch_counter : 743
Train Epoch 742: operator losses : 0.3347
Training batch: [#################################################.] 743/750 mopt epoch_counter : 744
Train Epoch 743: operator losses : 0.4183
Training batch: [#################################################.] 744/750 mopt epoch_counter : 745
Train Epoch 744: operator losses : 0.4607
Training batch: [#################################################.] 745/750 mopt epoch_counter : 746
Train Epoch 745: operator losses : 0.3076
Training batch: [#################################################.] 746/750 mopt epoch_counter : 747
Train Epoch 746: operator losses : 0.3570
Training batch: [#################################################.] 747/750 mopt epoch_counter : 748
Train Epoch 747: operator losses : 0.2381
Training batch: [#################################################.] 748/750 mopt epoch_counter : 749
Train Epoch 748: operator losses : 0.7071
Training batch: [#################################################.] 749/750 mopt epoch_counter : 750
Train Epoch 749: operator losses : 0.3527
Training batch: [##################################################] 750/750
FeatureSelector.train_networks_on_data end=============
Training Time : 116.266
FeatureSelector.get_importances start=============
FeatureSelector.get_importances end=============
Importances: [-1.35601265e-04 -1.89684579e-04 -1.12234280e-04 -1.57050628e-04
-4.87793695e-05 -9.42096449e-06 3.95674069e-05 -5.45686380e-05
6.73778486e-05 -1.57727423e-04 -8.69021460e-05 -7.24262936e-05
-1.76045869e-04 -5.84084191e-05 7.71154664e-05 -1.69446837e-04
-7.68252212e-05 -1.55767062e-04 -1.10801091e-04 -1.08170701e-04
-5.34530955e-06 -1.88689621e-04 -8.49246280e-05 -1.21254612e-04
6.35886681e-05 -6.25879620e-05 -9.45531137e-05 -5.28027158e-05
-7.90567719e-05 -6.48953937e-05 -1.05163948e-04 -1.33071808e-04
5.00696806e-05 -2.74746581e-05 -1.44836144e-04 -4.43730642e-05
6.92673275e-05 -1.01410864e-04 8.32427904e-05 -1.11390204e-04
2.72541929e-05 -1.20866549e-04 -7.50299005e-05 1.99365445e-06
-4.30650944e-05 9.10181334e-05 -7.81334384e-05 6.76166383e-05
-3.51907620e-05 -1.14001399e-04 -1.15019669e-04 -5.23323142e-05
-1.22827660e-05 -7.49239771e-05 -2.05970514e-06 -2.45833985e-06
-1.25705003e-04 1.22486337e-04 -1.45103390e-04 -1.24117032e-05
-7.75637034e-07 -9.79814649e-05 3.11019321e-05 -1.03850529e-04
-6.38017664e-05 2.01862640e-05 -1.49968211e-04 6.62118182e-05
-1.31208013e-04 -1.83875636e-05 2.55896721e-05 1.18354568e-04
8.59297797e-05 6.03253029e-05 -9.35978969e-05 9.80056393e-06
-1.75902678e-04 -5.22700866e-05 -7.53463755e-05 -3.00468655e-05
9.67117376e-05 -1.37418669e-04 -1.18469528e-04 3.91078429e-05
-9.99089098e-05 -3.06724287e-05 7.87497484e-05 -1.15895287e-04
6.34781245e-05 4.34700451e-06 -4.43711615e-05 7.57734451e-05
5.10101308e-05 2.07501944e-05 -9.60452780e-06 6.30242503e-05
-1.09596942e-04 7.46610967e-05 5.13304221e-05 -1.69024861e-04
3.26144327e-05 -2.04247888e-04 -9.59180543e-05 4.51342567e-05
2.74224330e-05 -1.54326670e-04 -1.35311668e-04 -8.42934460e-05
-1.39752112e-04 -1.63426914e-04 2.71288500e-05 -1.35378170e-04
5.08414341e-05 7.32167027e-05 -2.36098895e-05 9.46164582e-05
-1.29453445e-04 6.77710250e-06 5.72814934e-05 4.51057203e-05
1.97651457e-06 -1.68070852e-04 -1.45806102e-04 -1.21144927e-04
-1.57066199e-04 -2.23683473e-05 4.55285699e-05 1.94282638e-05
5.28273486e-05 5.85149901e-05 -1.36702918e-04 2.97555016e-05
9.35994904e-05 -1.53560643e-04 1.98756115e-05 -1.00283964e-04
-1.07179359e-04 1.50592523e-05 5.40304536e-05 -6.83212638e-05
8.78373794e-06 9.44856438e-05 1.68116367e-05 -1.14270828e-04
-1.55162226e-04 2.00972663e-05 -2.05105080e-05 4.18284544e-05
5.59034779e-05 -9.93978101e-05 -7.57743692e-05 6.08144255e-05
-7.66612065e-05 -7.16211289e-05 -1.99681139e-07 -3.43296233e-05
1.51407648e-05]
Optimal_subset: (array([ 5, 6, 8, 14, 20, 24, 32, 33, 36, 38, 40, 43, 44,
45, 47, 48, 52, 54, 55, 57, 59, 60, 62, 65, 67, 69,
70, 71, 72, 73, 75, 79, 80, 83, 85, 86, 88, 89, 91,
92, 93, 94, 95, 97, 98, 100, 103, 104, 110, 112, 113, 114,
115, 117, 118, 119, 120, 125, 126, 127, 128, 129, 131, 132, 134,
137, 138, 140, 141, 142, 145, 146, 147, 148, 151, 154, 155, 156]),)
Test performance (CE): 0.3657189905643463
Test performance (AUC): 0.7717195153236389
Test performance (ACC): 0.822662353515625
Test performance (precision): 0.6215420961380005
Test performance (recall): 0.6734693646430969
CPU times: user 1min 54s, sys: 3.22 s, total: 1min 58s
Wall time: 1min 58s